HORNE, Ross James ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
MAUW, Sjouke ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Tiu, Alwen
External co-authors :
yes
Language :
English
Title :
The Attacker Does not Always Hold the Initiative: Attack Trees with External Refinement
Publication date :
2018
Event name :
The Fifth International Workshop on Graphical Models for Security
Event place :
Oxford, United Kingdom
Event date :
July 8, 2018
Audience :
International
Main work title :
Proc.\ 5th International Workshop on Graphical Models for Security (GraMSec'18)
Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. J. Symbolic Logic 59(2), 543–574 (1994). https://doi.org/10.2307/2275407
Abramsky, S., Jagadeesan, R.: Game semantics for access control. In: Proceedings of the 25th Conference on Mathematical Foundations of Programming Semantics (MFPS 2009) Electronic Notes in Theoretical Computer Science, vol. 249, pp. 135–156 (2009). https://doi.org/10.1016/j.entcs.2009.07.088
Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: 14th Annual IEEE Symposium on Logic in Computer Science LICS, Trento, Italy, 2–5 July 1999, pp. 431–442. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.1999.782638
Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297
Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7 6
Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of attack-defence scenarios. In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF), pp. 105–119. IEEE Computer Society (2016). https://doi.org/10. 1109/CSF.2016.15
Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 83–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 7
Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937). https://doi.org/10.1215/S0012-7094-37-00334-X
Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic evaluation of security investments. In: First International Conference on Availability, Reliability and Security (ARES 2006), pp. 416–423. IEEE Computer Society (2006). https://doi.org/10.1109/ARES.2006.46
Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1), 183–220 (1992). https://doi.org/10.1016/0168-0072(92)90073-9
Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833
Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11962977 19
Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol. 273, pp. 383–396. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09680-3 26
Debbabi, M., Saleh, M.: Game semantics model for security protocols. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 125–140. Springer, Heidelberg (2005). https://doi.org/10.1007/11576280 10
Delande, O., Miller, D., Saurin, A.: Proof and refutation in MALL as a game. Ann. Pure Appl. Logic 161(5), 654–672 (2010). https://doi.org/10.1016/j.apal.2009.07. 017
Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing systems. In: Proceedings of 1991 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 110–121, May 1991. https://doi.org/10.1109/RISP. 1991.130780
Dimovski, A.S.: Ensuring secure non-interference of programs by game semantics. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 81–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11851-2 6
Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen, D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 3
Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.C.: Refinement-aware generation of attack trees. In: Livraga, G., Mitchell, C. (eds.) STM 2017. LNCS, vol. 10547, pp. 164–179. Springer, Cham (2017). https://doi. org/10.1007/978-3-319-68063-7 11
Heijltjes, W., Hughes, D.J.: Complexity bounds for sum-product logic via additive proof nets and petri nets. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 80–91. IEEE Computer Society (2015). https://doi.org/10.1109/LICS.2015.18
Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0 9
Horne, R.: The consistency and complexity of multiplicative additive system virtual. Sci. Ann. Comput. Sci. 25(2), 245 (2015). https://doi.org/10.7561/SACS. 2015.2.245
Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on linear logic. Fund. Inform. 153(1–2), 57–86 (2017). https://doi.org/10.3233/FI-2017-1531
Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-8 23
Jiang, R., Luo, J., Wang, X.: An attack tree based risk assessment for location privacy in wireless sensor networks. In: WiCOM, pp. 1–4 (2012). https://doi.org/10.1109/WiCOM.2012.6478402
Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–defense trees and two-player binary zero-sum extensive form games are equivalent. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17197-0 17
Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense modeling: don’t miss the forest for the attack trees. C. S. Rev. 13–14, 1–38 (2014)
Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130(1–3), 79–123 (2004). https://doi.org/10.1016/j.apal.2004.04.006
Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11734727 17
Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827 14
Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees: towards unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5(8), 929–943 (2012). https://doi.org/10.1002/sec.299
Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)