Reference : Subtle Fluorination of Conjugated Molecules Enables Stable Nanoscale Assemblies on Me...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Physics
Physics and Materials Science
Subtle Fluorination of Conjugated Molecules Enables Stable Nanoscale Assemblies on Metal Surfaces
Niederhausen, Jens [> >]
Zhang, Yuan [> >]
Kabeer, Fairoja [> >]
Garmshausen, Yves [> >]
Schmidt, Bernd [> >]
Li, Yang [> >]
Braun, Kai-Felix [> >]
Hecht, Stefan [> >]
Tkatchenko, Alexandre mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit >]
Koch, Norbert [> >]
Hla, Saw [> >]
Journal of Physical Chemistry. C, Nanomaterials and interfaces
American Chemical Society
Yes (verified by ORBilu)
[en] In molecular self-assembly on surfaces, the structure is governed by the intricate balance of attractive and repulsive forces between molecules as well as between molecules and the substrate. Frequently, repulsive interactions between molecules adsorbed on a metal surface dominate in the low-coverage regime, and dense self-assembled structures can only be observed close to full monolayer coverage. Here, we demonstrate that fluorination at selected positions of conjugated molecules provides for sufficiently strong, yet nonrigid, H···F bonding capability that (i) enables the formation of stable nanoscale molecular assemblies on a metal surface and (ii) steers the assemblies’ structure. This approach should be generally applicable and will facilitate the construction and study of individual nanoscale molecular assemblies with structures that are not attainable in the high-coverage regime.
Researchers ; Professionals ; Students ; General public ; Others

File(s) associated to this reference

Fulltext file(s):

Open access
135-fluorination-conj-molecules-surfaces-JPCC-2018.pdfPublisher postprint1.99 MBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.