Article (Scientific journals)
Multi-Gbps HTTP traffic analysis in commodity hardware based on local knowledge of TCP streams
VEGA MORENO, Carlos Gonzalo; Roquero, Paula; Aracil, Javier
2017In Computer Networks, 113, p. 258-268
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S1389128617300014-main.pdf
Publisher postprint (4.19 MB)
Download
Full Text Parts
1701.04617.pdf
Author postprint (4.04 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
High speed analysis; HTTP; Traffic analysis
Abstract :
[en] In this paper we propose and implement novel techniques for performance evaluation of web traffic (response time, response code, etc.), with no reassembly of the underlying TCP connection, which severely restricts the traffic analysis throughput. Furthermore, our proposed software for HTTP traffic analysis runs in standard hardware, which is very cost-effective. Besides, we present sub-TCP connection load balancing techniques that significantly increase throughput at the expense of losing very few HTTP transactions. Such techniques provide performance evaluation statistics which are indistinguishable from the single-threaded alternative with full TCP connection reassembly. © 2017 Elsevier B.V.
Disciplines :
Computer science
Author, co-author :
VEGA MORENO, Carlos Gonzalo ;  Universidad Autónoma de Madrid > Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones
Roquero, Paula;  Universidad Autónoma de Madrid > Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones
Aracil, Javier;  Universidad Autónoma de Madrid > Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones
External co-authors :
yes
Title :
Multi-Gbps HTTP traffic analysis in commodity hardware based on local knowledge of TCP streams
Publication date :
2017
Journal title :
Computer Networks
ISSN :
1389-1286
eISSN :
1872-7069
Publisher :
Elsevier B.V.
Volume :
113
Pages :
258-268
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences
European Projects :
FP7 - 318389 - FED4FIRE - Federation for FIRE
Funders :
CE - Commission Européenne
Available on ORBilu :
since 12 November 2018

Statistics


Number of views
77 (3 by Unilu)
Number of downloads
255 (3 by Unilu)

Scopus citations®
 
11
Scopus citations®
without self-citations
7
OpenCitations
 
11
OpenAlex citations
 
12
WoS citations
 
11

Bibliography


Similar publications



Contact ORBilu