(c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
All documents in ORBilu are protected by a user license.
Abstract :
[en] At every iteration or timestep of the online phase of some reduced-order modelling schemes, large linear systems must be assembled and then projected onto a reduced order basis of small dimension. The projected small linear systems are cheap to solve, but assembly and projection are now the dominant computational cost. In this paper we introduce a new hyper-reduction strategy called reduced assembly (RA) that drastically cuts these costs. RA consists of a triangulation adaptation algorithm that uses a local error indicator to con- struct a reduced assembly triangulation specially suited to the reduced order basis. Crucially, this reduced assembly triangulation has fewer cells than the original one, resulting in lower assembly and projection costs. We demonstrate the efficacy of RA on a Galerkin-POD type reduced order model (RAPOD). We show performance increases of up to five times over the baseline Galerkin-POD method on a non-linear reaction-diffusion problem solved with a semi-implicit time-stepping scheme and up to seven times for a 3D hyperelasticity problem solved with a continuation Newton-Raphson algorithm. The examples are implemented in the DOLFIN finite element solver using PETSc and SLEPc for linear algebra. Full code and data files to produce the results in this paper are provided as supplementary material.
Scopus citations®
without self-citations
6