Article (Périodiques scientifiques)
An Empirical Evaluation of Evolutionary Algorithms for Unit Test Suite Generation
Campos, Jose; Ge, Yan; Albunian, Nasser et al.
2018In Information and Software Technology, 104 (December), p. 207-235
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
campos-ist2018.pdf
Postprint Éditeur (1.02 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Context: Evolutionary algorithms have been shown to be e ective at generating unit test suites optimised for code coverage. While many speci c aspects of these algorithms have been evaluated in detail (e.g., test length and di erent kinds of techniques aimed at improving performance, like seeding), the in uence of the choice of evolutionary algorithm has to date seen less attention in the literature. Objective: Since it is theoretically impossible to design an algorithm that is the best on all possible problems, a common approach in software engineering problems is to rst try the most common algorithm, a Genetic Algorithm, and only afterwards try to re ne it or compare it with other algorithms to see if any of them is more suited for the addressed problem. The objective of this paper is to perform this analysis, in order to shed light on the in uence of the search algorithm applied for unit test generation. Method: We empirically evaluate thirteen di erent evolutionary algorithms and two random approaches on a selection of non-trivial open source classes. All algorithms are implemented in the EvoSuite test generation tool, which includes recent optimisations such as the use of an archive during the search and optimisation for multiple coverage criteria. Results: Our study shows that the use of a test archive makes evolutionary algorithms clearly better than random testing, and it con rms that the DynaMOSA many-objective search algorithm is the most e ective algorithm for unit test generation. Conclusions: Our results show that the choice of algorithm can have a substantial in uence on the performance of whole test suite optimisation. Although we can make a recommendation on which algorithm to use in practice, no algorithm is clearly superior in all cases, suggesting future work on improved search algorithms for unit test generation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Campos, Jose
Ge, Yan
Albunian, Nasser
Fraser, Gordon
Eler, Marcelo
ARCURI, Andrea;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
An Empirical Evaluation of Evolutionary Algorithms for Unit Test Suite Generation
Date de publication/diffusion :
décembre 2018
Titre du périodique :
Information and Software Technology
ISSN :
0950-5849
eISSN :
1873-6025
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
104
Fascicule/Saison :
December
Pagination :
207-235
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 694277 - TUNE - Testing the Untestable: Model Testing of Complex Software-Intensive Systems
Organisme subsidiant :
CE - Commission Européenne
Disponible sur ORBilu :
depuis le 10 septembre 2018

Statistiques


Nombre de vues
223 (dont 63 Unilu)
Nombre de téléchargements
190 (dont 9 Unilu)

citations Scopus®
 
80
citations Scopus®
sans auto-citations
61
OpenCitations
 
47
citations OpenAlex
 
91
citations WoS
 
77

Bibliographie


Publications similaires



Contacter ORBilu