[en] Reservoir Computing (RC) uses a randomly created recur- rent neural network where only a linear readout layer is trained. In this work, RC is used for detecting complex events in autonomous robot navi- gation. This can be extended to robot localization based solely on sensory information. The robot thus builds an implicit map of the environment without the use of odometry data. These techniques are demonstrated in simulation on several complex and even dynamic environments.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ANTONELO, Eric Aislan ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Schrauwen, Benjamin
Dutoit, Xavier
Stroobandt, Dirk
Nuttin, Marnix
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Event detection and localization in mobile robot navigation using reservoir computing
Arkin, R.: Behavior-based robotics. MIT Press, Cambridge (1998)
Antonelo, E.A., Figueiredo, M., Baerlvedt, A.J., Calvo, R.: Intelligent autonomous navigation for mobile robots: spatial concept acquisition and object discrimination. In: Proceedings of the 6th IEEE International Symposium on Computational Intelligence in Robotics and Automation, Helsinki, Finland (2005)
Antonelo, E.A., Baerlvedt, A.J., Rognvaldsson, T., Figueiredo, M.: Modular neural network and classical reinforcement learning for autonomous robot navigation: Inhibiting undesirable behaviors. In: Proceedings of IJCNN 2006, Vancouver, Canada (2006)
Guivant, J., Nebot, E., Baiker, S.: Autonomous navigation and map building using laser range sensors in outdoor applications. Journal of Robotics Systems 17(10), 565-583 (2000)
Bailey, T., Durrant-Whyte, H.: Simultaneous localisation and mapping (SLAM): Part ii state of the art. Robotics and Automation Magazine (2006)
Jaeger, H.: The echo state approach to analysing and training recurrent neural networks. Technical Report GMD Report 148, German National Research Center for Information Technology (2001)
Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531-2560 (2002)
Steil, J.J.: Backpropagation-Decorrelation: Online recurrent learning with O(N) complexity. In: Proceedings of IJCNN '04, vol. 1, pp. 843-848 (2004)
Jaeger, H.: Short term memory in echo state networks. Technical Report GMD Report 152, German National Research Center for Information Technology (2001)
Verstraeten, D., Schrauwen, B., D'Haene, M., Stroobandt, D.: A unifying comparison of reservoir computing methods. Neural Networks 20, 391-403 (2007)
Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication. Science 308, 78-80 (2004)
Schönherr, K., Cistelecan, M., Hertzberg, J., Christaller, T.: Extracting situation facts from activation value histories in behavior-based robots. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 305-319. Springer, Heidelberg (2001)
Hertzberg, J., Jaeger, H., Schönherr, F.: Learning to ground fact symbols in behavior-based robots. In: Proceedings of the 15th European Conference on Artificial Intelligence, pp. 708-712 (2002)
O'Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34, 171-175 (1971)
Jaeger, H., Lukosevicius, M., Popovici, D.: Optimization and applications of echo state networks with leaky integrator neurons. Neural Networks 20, 335-352 (2007)
Forster, A., Graves, A., Schmidhuber, J.: RNN-based learning of compact maps for efficient robot localization. In: Proceedings of ESANN (2007)