Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Modular reservoir computing networks for imitation learning of multiple robot behaviors
Waegeman, Tim; ANTONELO, Eric Aislan; wyffels, Francis et al.
2009In Proc. of the 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA)
Peer reviewed
 

Documents


Texte intégral
2009_tim_cira_ModularRC.pdf
Postprint Auteur (2.45 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Autonomous mobile robots must accomplish tasks in unknown and noisy environments. In this context, learning robot behaviors in an imitation based approach would be desirable in the perspective of service robotics as well as of learning robots. In this work, we use Reservoir Computing (RC) for learning robot behaviors by demonstration. In RC, a randomly generated recurrent neural network, the reservoir, projects the input to a dynamic temporal space. The reservoir states are mapped into a readout output layer which is the solely part being trained using standard linear regression. In this paper, we use a two layered modular structure, where the first layer comprises two RC networks, each one for learning primitive behaviors, namely, obstacle avoidance and target seeking. The second layer is composed of one RC network for behavior combination and coordination. The hierarchical RC network learns by examples given by simple controllers which implement the primitive behaviors. We use a simulation model of the e-puck robot which has distance sensors and a camera that serves as input for our system. The experiments show that, after training, the robot learns to coordinate the Goal Seeking (GS) and the Object Avoidance (OA) behaviors in unknown environments, being able to capture targets and navigate efficiently.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Waegeman, Tim
ANTONELO, Eric Aislan ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
wyffels, Francis
Schrauwen, Benjamin
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Modular reservoir computing networks for imitation learning of multiple robot behaviors
Date de publication/diffusion :
2009
Nom de la manifestation :
IEEE Int. Symp. on Computational Intelligence in Robotics and Automation (CIRA)
Date de la manifestation :
15-12-2009 to 18-12-2009
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proc. of the 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA)
Pagination :
27-32
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 29 août 2018

Statistiques


Nombre de vues
123 (dont 2 Unilu)
Nombre de téléchargements
295 (dont 0 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
7
citations OpenAlex
 
11
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu