Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
3DBodyTex: Textured 3D Body Dataset
SAINT, Alexandre Fabian A; AHMED, Eman; SHABAYEK, Abd El Rahman et al.
2018In 2018 Sixth International Conference on 3D Vision (3DV 2018)
Peer reviewed
 

Documents


Texte intégral
saint_et_al-3dbodytex-3dv_2018.pdf
Postprint Auteur (5.33 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
3DBodyTex; Human body modelling; 3D Body fitting; 3D body scans; Dataset
Résumé :
[en] In this paper, a dataset, named 3DBodyTex, of static 3D body scans with high-quality texture information is presented along with a fully automatic method for body model fitting to a 3D scan. 3D shape modelling is a fundamental area of computer vision that has a wide range of applications in the industry. It is becoming even more important as 3D sensing technologies are entering consumer devices such as smartphones. As the main output of these sensors is the 3D shape, many methods rely on this information alone. The 3D shape information is, however, very high dimensional and leads to models that must handle many degrees of freedom from limited information. Coupling texture and 3D shape alleviates this burden, as the texture of 3D objects is complementary to their shape. Unfortunately, high-quality texture content is lacking from commonly available datasets, and in particular in datasets of 3D body scans. The proposed 3DBodyTex dataset aims to fill this gap with hundreds of high-quality 3D body scans with high-resolution texture. Moreover, a novel fully automatic pipeline to fit a body model to a 3D scan is proposed. It includes a robust 3D landmark estimator that takes advantage of the high-resolution texture of 3DBodyTex. The pipeline is applied to the scans, and the results are reported and discussed, showcasing the diversity of the features in the dataset.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SAINT, Alexandre Fabian A ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AHMED, Eman ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SHABAYEK, Abd El Rahman  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
CHERENKOVA, Kseniya ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Gusev, Gleb
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
3DBodyTex: Textured 3D Body Dataset
Date de publication/diffusion :
2018
Nom de la manifestation :
3DV 2018, International Conference on 3DVision
Lieu de la manifestation :
Verona, Italie
Date de la manifestation :
from 05-09-2019 to 08-09-2018
Manifestation à portée :
International
Titre de l'ouvrage principal :
2018 Sixth International Conference on 3D Vision (3DV 2018)
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
URL complémentaire :
Projet FnR :
FNR11806282 - Accurate 3d Human Body Shape Modelling And Fitting Under Clothing, 2017 (01/09/2017-14/01/2021) - Alexandre Saint
Organisme subsidiant :
FNR - Fonds National de la Recherche
Artec Europe SARL
Disponible sur ORBilu :
depuis le 24 août 2018

Statistiques


Nombre de vues
1466 (dont 103 Unilu)
Nombre de téléchargements
1402 (dont 103 Unilu)

citations Scopus®
 
24
citations Scopus®
sans auto-citations
18

Bibliographie


Publications similaires



Contacter ORBilu