[en] Let X be a nonempty set and let i,j in {1,2,3,4}. We say that
a binary operation F:X^2 -> X is (i,j)-selective if
F(F(x_1,x_2),F(x_3,x_4)) = F(x_i,x_j),
for all x_1,x_2,x_3,x_4 in X. In this paper we provide
characterizations of the class of (i,j)-selective operations. We
also investigate some subclasses by adding algebraic properties such
as associativity or bisymmetry.
Disciplines :
Mathématiques
Auteur, co-auteur :
DEVILLET, Jimmy ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Kiss, Gergely
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Characterizations of biselective operations
Date de publication/diffusion :
avril 2019
Titre du périodique :
Acta Mathematica Hungarica
ISSN :
0236-5294
eISSN :
1588-2632
Maison d'édition :
Springer, Pays-Bas
Volume/Tome :
157
Fascicule/Saison :
2
Pagination :
387-407
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR10949314 - Geometric And Stochastic Methods In Mathematics And Applications, 2015 (01/10/2016-31/03/2023) - Gabor Wiese
Organisme subsidiant :
University of Luxembourg - UL FNR - Fonds National de la Recherche