Article (Périodiques scientifiques)
Accurate filtering of privacy-sensitive information in raw genomic data
DECOUCHANT, Jérémie; FERNANDES, Maria; VOLP, Marcus et al.
2018In Journal of Biomedical Informatics
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
paper.pdf
Preprint Auteur (388.72 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Filtering; Raw genomic data; Privacy
Résumé :
[en] Sequencing thousands of human genomes has enabled breakthroughs in many areas, among them precision medicine, the study of rare diseases, and forensics. However, mass collection of such sensitive data entails enormous risks if not protected to the highest standards. In this article, we follow the position and argue that post-alignment privacy is not enough and that data should be automatically protected as early as possible in the genomics workflow, ideally immediately after the data is produced. We show that a previous approach for filtering short reads cannot extend to long reads and present a novel filtering approach that classifies raw genomic data (i.e., whose location and content is not yet determined) into privacy-sensitive (i.e., more affected by a successful privacy attack) and non-privacy-sensitive information. Such a classification allows the fine-grained and automated adjustment of protective measures to mitigate the possible consequences of exposure, in particular when relying on public clouds. We present the first filter that can be indistinctly applied to reads of any length, i.e., making it usable with any recent or future sequencing technologies. The filter is accurate, in the sense that it detects all known sensitive nucleotides except those located in highly variable regions (less than 10 nucleotides remain undetected per genome instead of 100,000 in previous works). It has far less false positives than previously known methods (10% instead of 60%) and can detect sensitive nucleotides despite sequencing errors (86% detected instead of 56% with 2% of mutations). Finally, practical experiments demonstrate high performance, both in terms of throughput and memory consumption.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DECOUCHANT, Jérémie ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
FERNANDES, Maria ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOLP, Marcus  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Couto, Francisco M.;  LaSIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal
VERISSIMO, Paulo ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Accurate filtering of privacy-sensitive information in raw genomic data
Date de publication/diffusion :
2018
Titre du périodique :
Journal of Biomedical Informatics
ISSN :
1532-0464
eISSN :
1532-0480
Maison d'édition :
Elsevier, Orlando, Etats-Unis - Floride
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 07 juin 2018

Statistiques


Nombre de vues
350 (dont 57 Unilu)
Nombre de téléchargements
227 (dont 36 Unilu)

citations Scopus®
 
11
citations Scopus®
sans auto-citations
8
OpenCitations
 
9
citations OpenAlex
 
15
citations WoS
 
9

Bibliographie


Publications similaires



Contacter ORBilu