Article (Périodiques scientifiques)
Random or Evolutionary Search for Object-Oriented Test Suite Generation?
Shamshiri; Rojas; Gazzola et al.
2018In Software Testing, Verification and Reliability, 28 (4), p. 1660
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
paper.pdf
Postprint Auteur (537.33 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] An important aim in software testing is constructing a test suite with high structural code coverage – that is, ensuring that most if not all of the code under test has been executed by the test cases comprising the test suite. Several search-based techniques have proved successful at automatically generating tests that achieve high coverage. However, despite the well-established arguments behind using evolutionary search algorithms (e.g., genetic algorithms) in preference to random search, it remains an open question whether the benefits can actually be observed in practice when generating unit test suites for object-oriented classes. In this paper, we report an empirical study on the effects of using evolutionary algorithms (including a genetic algorithm and chemical reaction optimization) to generate test suites, compared with generating test suites incrementally with random search. We apply the EVOSUITE unit test suite generator to 1,000 classes randomly selected from the SF110 corpus of open source projects. Surprisingly, the results show that the difference is much smaller than one might expect: While evolutionary search covers more branches of the type where standard fitness functions provide guidance, we observed that, in practice, the vast majority of branches do not provide any guidance to the search. These results suggest that, although evolutionary algorithms are more effective at covering complex branches, a random search may suffice to achieve high coverage of most object-oriented classes.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Shamshiri
Rojas
Gazzola
Fraser
McMinn
Mariani
ARCURI, Andrea;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Random or Evolutionary Search for Object-Oriented Test Suite Generation?
Date de publication/diffusion :
mars 2018
Titre du périodique :
Software Testing, Verification and Reliability
ISSN :
0960-0833
eISSN :
1099-1689
Maison d'édition :
John Wiley & Sons
Volume/Tome :
28
Fascicule/Saison :
4
Pagination :
e1660
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR3949772 - Validation And Verification Laboratory, 2010 (01/01/2012-31/07/2018) - Lionel Briand
Disponible sur ORBilu :
depuis le 11 mars 2018

Statistiques


Nombre de vues
139 (dont 26 Unilu)
Nombre de téléchargements
134 (dont 5 Unilu)

citations Scopus®
 
21
citations Scopus®
sans auto-citations
15
OpenCitations
 
14
citations OpenAlex
 
27
citations WoS
 
19

Bibliographie


Publications similaires



Contacter ORBilu