Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
Stationary Wavelet Transform for denoising Pulsed Thermography data: optimization of wavelet parameters for enhancing defects detection
Revel, Gian Marco; COPERTARO, Edoardo; Chiariotti, Paolo et al.
2017In Quantitative Infra Red Thermography Journal
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Copertaro_QIRT_2016.pdf
Postprint Éditeur (417.46 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Infrared Testing; Pulse Thermography; Wavelet Denoising; Optimisation Criteria
Résumé :
[en] Innovative denoising techniques based on Stationary Wavelet Transform (SWT) have started being applied to Pulsed Thermography (PT) sequences, showing marked potentialities in improving defect detection. In this contribution, a SWT-based denoising procedure is performed on high and low resolution PT sequences. Samples under test are two composite panels with known defects. The denoising procedure undergoes an optimization step. An innovative criterion for selecting the optimal decomposition level in multi-scale SWT-based denoising is proposed. The approach is based on a comparison, in the wavelet domain, of the information content in the thermal image with noise propagated. The optimal wavelet basis is selected according to two performance indexes, respectively based on the probability distribution of the information content of the denoised frame, and on the Energy-to-Shannon Entropy ratio. After the optimization step, denoising is applied on the whole thermal sequence. The approximation coefficients at the optimal level are moved to the frequency domain, then low-pass filtered. Linear Minimum Mean Square Error (LMMSE) is applied to detail coefficients at the optimal level. Finally, Pulsed Phase Thermography (PPT) is performed. The performance of the optimized denoising method in improving the defect detection capability respect to the non-denoised case is quantified using the Contrast Noise Ratio (CNR) criterion.
Disciplines :
Ingénierie aérospatiale
Auteur, co-auteur :
Revel, Gian Marco;  Università Politecnica delle Marche > DIISM > Professor
COPERTARO, Edoardo ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Chiariotti, Paolo;  Università Politecnica delle Marche > DIISM > Researcher
Pandarese, Giuseppe;  Università Politecnica delle Marche > DIISM > Researcher
D'Antuono, Antonio;  Università Politecnica delle Marche > DIISM > PhD candidate
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Stationary Wavelet Transform for denoising Pulsed Thermography data: optimization of wavelet parameters for enhancing defects detection
Date de publication/diffusion :
2017
Nom de la manifestation :
13th Quantitative Infrared Thermography Conference
Date de la manifestation :
July 4-8, 2016
Manifestation à portée :
International
Titre du périodique :
Quantitative Infra Red Thermography Journal
ISSN :
1768-6733
eISSN :
2116-7176
Maison d'édition :
Taylor & Francis
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 636063 - INSITER - Intuitive Self-Inspection Techniques using Augmented Reality for construction, refurbishment and maintenance of energy-efficient buildings made of prefabricated components
Organisme subsidiant :
CE - Commission Européenne
Disponible sur ORBilu :
depuis le 11 mars 2018

Statistiques


Nombre de vues
130 (dont 2 Unilu)
Nombre de téléchargements
102 (dont 2 Unilu)

citations OpenAlex
 
1
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu