Pas de texte intégral
Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
The Empirical Saddlepoint Estimator
HOLCBLAT, Benjamin; Sowell, Fallaw
20172017 Computational Financial Econometrics Conference
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Empirical saddlepoint approximation; Moment-based estimation; Small-sample asymptotic;
Résumé :
[en] Previous studies have shown that existing moment-based estimation approaches have poor small-sample performance in some applications. We propose an alternative that is based on the ESP (empirical saddlepoint) approximation of the solutions to the empirical moment conditions. Saddlepoint approximations are known to perform well in small sample. The novel estimator proposed, which we call the ESP estimator, is the mode of the ESP approximation. We show that it is consistent and asymptotically normal, and we study its higher-order bias. We propose novel test statistics based on the ESP estimator. Finally, we also investigate the finite-sample properties of the ESP estimator and related test statistics through Monte-Carlo simulations.
Disciplines :
Méthodes quantitatives en économie & gestion
Auteur, co-auteur :
HOLCBLAT, Benjamin  ;  University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Luxembourg School of Finance (LSF)
Sowell, Fallaw;  Carnegie Mellon University > Tepper Business School
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
The Empirical Saddlepoint Estimator
Date de publication/diffusion :
17 décembre 2017
Nom de la manifestation :
2017 Computational Financial Econometrics Conference
Organisateur de la manifestation :
CFEnetwork, Birkbeck University of London and King's College London
Lieu de la manifestation :
London, Royaume-Uni
Date de la manifestation :
16-18 December 2017
Manifestation à portée :
International
Références de l'abstract :
Previous studies have shown that existing moment-based estimation approaches have poor small-sample performance in some applications. We propose an alternative that is based on the ESP (empirical saddlepoint) approximation of the solutions to the empirical moment conditions. Saddlepoint approximations are known to perform well in small sample. The novel estimator proposed, which we call the ESP estimator, is the mode of the ESP approximation. We show that it is consistent and asymptotically normal, and we study its higher-order bias. We propose novel test statistics based on the ESP estimator. Finally, we also investigate the finite-sample properties of the ESP estimator and related test statistics through Monte-Carlo simulations.
Disponible sur ORBilu :
depuis le 01 mars 2018

Statistiques


Nombre de vues
151 (dont 13 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu