Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Profiling Energy Efficiency of Mobile Crowdsensing Data Collection Frameworks for Smart City Applications
Tomasoni, Mattia; CAPPONI, Andrea; FIANDRINO, Claudio et al.
2018In The 6th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (IEEE Mobile Cloud 2018)
Peer reviewed
 

Documents


Texte intégral
mobile-cloud-dcf-camera-ready.pdf
Preprint Auteur (9.38 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mobile Crowdsensing; Data Collection Framework; Energy Efficiency
Résumé :
[en] Mobile crowdsensing (MCS) has emerged in the last years and has become one of the most prominent paradigms for urban sensing. In MCS, citizens actively participate in the sensing process by contributing data with their smartphones, tablets, wearables and other mobile devices to a collector. As citizens sustain costs while contributing data, i.e., the energy spent from the batteries for sensing and reporting, devising energy efficient data collection frameworks (DCFs) is essential. In this work, we compare the energy efficiency of several DCFs through CrowdSenSim, which allows to perform large-scale simulation experiments in realistic urban environments. Specifically, the DCFs under analysis differ one with each other by the data reporting mechanism implemented and the signaling between users and the collector needed for sensing and reporting decisions. Results reveal that the key criterion differentiating DCFs' energy consumption is the data reporting mechanism. In principle, continuous reporting to the collector should be more energy consuming than probabilistic reporting. However, DCFs with continuous reporting that implement mechanisms to block sensing and data delivery after a certain amount of contribution are more effective in harvesting data from the crowd.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Tomasoni, Mattia;  University of Trento > Dipartimento di Ingegneria e Scienza dell’Informazione
CAPPONI, Andrea ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
FIANDRINO, Claudio ;  IMDEA Networks Institute
KLIAZOVICH, Dzmitry ;  ExaMotive
Granelli, Fabrizio;  University of Trento > Dipartimento di Ingegneria e Scienza dell’Informazione
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Profiling Energy Efficiency of Mobile Crowdsensing Data Collection Frameworks for Smart City Applications
Date de publication/diffusion :
mars 2018
Nom de la manifestation :
The 6th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (IEEE Mobile Cloud 2018)
Lieu de la manifestation :
Bamberg, Allemagne
Date de la manifestation :
March 2018
Manifestation à portée :
International
Titre de l'ouvrage principal :
The 6th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (IEEE Mobile Cloud 2018)
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 07 février 2018

Statistiques


Nombre de vues
274 (dont 4 Unilu)
Nombre de téléchargements
299 (dont 0 Unilu)

citations Scopus®
 
22
citations Scopus®
sans auto-citations
19
citations OpenAlex
 
19

Bibliographie


Publications similaires



Contacter ORBilu