Silicone; Finite element stress analysis; Mechanical properties of adhesives; Failure criterion
Abstract :
[en] In façade structures, adhesively bonded connections between glass panels and metallic substructures represent an attractive alternative to mechanical fixation devices. Apart from positive aspects regarding the construction's energy efficiency and aesthetics, the uniform load transfer reduces stress concentrations in the adherends, which is beneficial especially regarding brittle materials like glass. Structural silicone sealants are generally used for these kind of applications due to their excellent adhesion on glass and their exceptional resistance against environmental influences and ageing. For the verification of the bonded connection, non-linear numerical simulations, such as the Finite Element Method, are increasingly used. The resulting three-dimensional stress states need to be assessed with the help of an appropriate failure criterion. In this paper, an overview is given on available failure criteria for rubber-like materials. The applicability of these criteria on the silicone sealant is verified regarding three characteristic stress states: uniaxial tension, shear and compression. The proposed engineering failure criterion is the true strain magnitude, which is valid for bonded connections in form of linear beads for cohesive failure of the adhesive. For Dow Corning® 993 structural silicone sealant, the strain magnitude, evaluated using true strains, at failure could be determined as 1.6.
Disciplines :
Civil engineering
Author, co-author :
STAUDT, Yves ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
ODENBREIT, Christoph ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Schneider, Jens; Technische Universität Darmstadt > Institute of Structural Mechanics and Design
External co-authors :
yes
Language :
English
Title :
Failure behaviour of silicone adhesive in bonded connections with simple geometry. (LAJ18.A)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Tibolt, M., Odenbreit, C., The stress peak at the borehole of point-fitted IGU with undercut anchors. J Facade Des Eng 2:1-2 (2014), 33–66, 10.3233/FDE-130011.
Dias, V., Odenbreit, C., Hechler, O., Scholzen, F., Zineb, T.B., Development of a constitutive hyperelastic material law for numerical simulations of adhesive steel-glass connections using structural silicone. Int J Adhes Adhes 48 (2014), 194–209, 10.1016/j.ijadhadh.2013.09.043.
de Buyl, F., Silicone sealants and structural adhesives. Int J Adhes Adhes 21:5 (2001), 411–422, 10.1016/ S0143-7496(01)00018-5.
Richter, C., Abeln, B., Geßler, A., Feldmann, M., Structural steel-glass facade panels with multi-side bonding – Nonlinear stress-strain behaviour under complex loading situations. Int J Adhes Adhes 55 (2014), 18–28, 10.1016/j.ijadhadh.2014.07.004.
ETAG 002., Guideline for European Technical Approval for Structural Sealant Glazing Kits, European Organisation for Technical Approvals; 2012.
Descamps, P., Iker, J., Wolf, A.T., Effects of anodized aluminium surface parameters on the long-term adhesion of silicone structural glazing sealants. Constr Build Mater 10:7 (1996), 527–538, 10.1016/0950-0618(96)00008-6.
Drass M, Schneider J, On the mechanical behavior of transparent structural silicone adhesive - TSSA, In: Zingoni A. (Ed.), Insights and Innovations in Structural Engineering, Mechanics and Computation: SEMC 2016 - Sixth International Conference on Structural Engineering, Mechanics and Computation, Elsevier B.V., 2016. doi: 10.1201/9781315641645-74.
Dow Corning Corporation., Case study: Forum Hochhaus Frankfurt am Main, Germany, Dow Corning Corporation, form number 62-1298C-01; 2010.
Gutowski, V.W., Russell, L., Cerra, A., New tests for adhesion of silicone sealants. Constr Build Mater 7:1 (1993), 19–25, 10.1016/0950-0618(93)90021-4.
Rey, T., Chagnon, G., Cam, J.-B.L., Favier, D., Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers. Polym Test 32:3 (2013), 492–501, 10.1016/j.polymertesting.2013.01.008.
ASTM C1401, Standard guide for structural sealant glazing, 2002, ASTM International.
Staudt Y, Schneider J, Odenbreit C. Investigation of the material behaviour of bonded connection with silicone, In: Schneider J, Weller B. (Eds.), Engineered Transparency international conference at glasstec, Düsseldorf, Germany; 2014.
Scherer, T., Werkstoffspezifisches Spannungs-Dehnungs-Verhalten und Grenzen der Beanspruchbarkeit elastischer Klebungen. [Ph.D.-thesis], 2014, Technische Universität Kaiserslautern.
Weißgraeber, P., Becker, W., Finite fracture mechanics model for mixed mode fracture in adhesive joints. Int J Adhes Adhes 50 (2013), 2383–2394, 10.1016/j.ijsolstr.2013.03.012.
Staudt Y, Odenbreit C, Schneider J. Investigation of bonded connections with silicone under shear loading, In: Bos F, Louter C, Belis J. (Eds.), Challenging Glass 5 - Conference on Architectural and Structural Applications of Glass, 2016.
Staudt, Y., Proposal of a failure criterion of adhesively bonded connections with silicone. [Ph.D. thesis], 2017, University of Luxembourg / Technische Universität Darmstadt [not yet published].
Naït-Abdelaziz, M., Zaïri, F., Qu, Z., Hamdi, A., Aït-Hocine, N., J integral as a fracture criterion of rubber-like materials using the intrinsic defect concept. Mech Mater 53 (2012), 80–90, 10.1016/j.mechmat.2012.05.001.
Gross, D., Seelig, T., Fracture mechanics: with an introduction to micromechanics, 2, 2011, Springer.
Gent, A.N., Lindley, P.B., Internal rupture of bonded rubber cylinders in tension. Proc R Soc Lond Ser A Math Phys Sci 249:1257 (1959), 195–205, 10.1016/10.2307/100509.
Zine, A., Benseddiq, N., Naït-Abdelaziz, M., Rubber fatigue life under multiaxial loading: numerical and experimental investigations. Int J Fatigue 33:10 (2011), 1360–1368, 10.1016/j.ijfatigue.2011.05.005.
Molls, M., Experimentelle und numerische Untersuchung ein- und mehrachsig belasteter Elastomerbuchsen unter besonderer Berücksichtigung des Reihenfolgeeinflusses. [PhD-thesis], 2013, Universität Duisburg-Essen.
Machado, G., Chagnon, G., Favier, D., Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results. Mech Mater 42:9 (2010), 841–851, 10.1016/j.mechmat.2010.07.001.
Wolf, A., Descamps, P., Determination of Poisson's Ratio of silicone sealant from ultrasonic and tensile measurements. [ASTM STP 1422] Johnson, P., (eds.) Performance of exterior building walls, 2002, American Society for Testing and Materials, West Conshohocken, PA.
Marlow R. A general first-invariant hyperelastic constitutive model, In: Busfield J, Muhr A.(Eds.), Constitutive models for rubber III In: Proceedings of the third European conference on constitutive models for rubber, London, Swets & Zeitlinger, Lisse, pp. 157–160; 2003.
ASTM D412, Standard test methods for vulcanized rubber and thermoplastic elastomers - tension, 2013, ASTM International.
Franz, J., Untersuchungen zur Resttragfähigkeit von gebrochenen Verglasungen: investigation of the residual load-bearing behaviour of fractured glazing. [Ph.D.-thesis], 2015, Technische Universität Darmstadt, 10.1007/978-3-662-48556-9.
Grandcoin, J., Boukamel, A., Lejeunes, S., A micro-mechanically based continuum damage model for fatigue life prediction of filled rubbers. Int J Solids Struct 51:6 (2014), 1274–1286, 10.1016/j.ijsolstr.2013.12.018.
Chen, Z., Adams, R., Da Silva, L., The use of the J-integral vector to analyse adhesive bonds with and without a crack. Int J Adhes Adhes 31 (2011), 48–55, 10.1016/j.ijadhadh.2010.11.005.
Adams, R., Peppiatt, N., Stress analysis of adhesive bonded tubular lap joints. J Adhes 9:1 (1977), 1–18, 10.1080/ 00218467708075095.
Dorfmann, A., Ogden, R., A pseudo-elastic model for loading, partial unloading and reloading of particle–reinforced rubber. Int J Solids Struct 40:11 (2003), 2699–2714.
Sikora, P., Materialcharakterisierung und -modellierung zur Simulation von Klebverbindungen mit Polyurethanklebstoffen. [Ph.D.-thesis], 2014, Universität Paderborn.
Drass, M., Schwind, G., Schneider, J., Kolling, S., Adhesive connections in glass structures – part I: experiments and analytics on thin structural silicone. Glass Struct Eng, 2017, 1–16, 10.1007/s40940-017-0046-5.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.