Article (Périodiques scientifiques)
Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks
TSAKMALIS, Anestis; CHATZINOTAS, Symeon; OTTERSTEN, Björn
2017In IEEE Journal of Selected Topics in Signal Processing
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
JournalPaper_camera_ready.pdf
Postprint Auteur (654.24 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Cognitive Radio Networks; Expectation Propagation; Active Learning
Résumé :
[en] In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
TSAKMALIS, Anestis ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks
Date de publication/diffusion :
21 décembre 2017
Titre du périodique :
IEEE Journal of Selected Topics in Signal Processing
ISSN :
1932-4553
eISSN :
1941-0484
Maison d'édition :
Institute of Electrical and Electronics Engineers (IEEE), New York, Etats-Unis - New York
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 742648 - AGNOSTIC - Actively Enhanced Cognition based Framework for Design of Complex Systems
Organisme subsidiant :
FNR - Fonds National de la Recherche
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 24 janvier 2018

Statistiques


Nombre de vues
221 (dont 25 Unilu)
Nombre de téléchargements
178 (dont 16 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
6
citations OpenAlex
 
9
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu