Article (Scientific journals)
Intelligent Gaming for Mobile Crowd-Sensing Participants to Acquire Trustworthy Big Data in the Internet of Things
Pouryazdan, Maryam; Fiandrino, Claudio; Kantarci, Burak et al.
2017In IEEE Access, 5, p. 22209 - 22223
Peer Reviewed verified by ORBi
 

Files


Full Text
08064624.pdf
Publisher postprint (6.37 MB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Ambient intelligence, data acquisition, data analysis, distributed computing, intelligent sensors, Internet of Things, mobile computing, game theory, crowd-sensing, gami cation.
Abstract :
[en] In mobile crowd-sensing systems, the value of crowd-sensed big data can be increased by incentivizing the users appropriately. Since data acquisition is participatory, crowd-sensing systems face the challenge of data trustworthiness and truthfulness assurance in the presence of adversaries whose motivation can be either manipulating sensed data or collaborating unfaithfully with the motivation of maximizing their income. This paper proposes a game theoretic methodology to ensure trustworthiness in user recruitment in mobile crowd-sensing systems. The proposed methodology is a platform-centric framework that consists of three phases: user recruitment, collaborative decision making on trust scores, and badge rewarding. In the proposed framework, users are incentivized by running sub-game perfect equilibrium and gami cation techniques. Through simulations, we showthat approximately 50% and a minimum of 15% improvement can be achieved by the proposed methodology in terms of platform and user utility, respectively, when compared with fully distributed and user-centric trustworthy crowd-sensing.
Disciplines :
Computer science
Author, co-author :
Pouryazdan, Maryam
Fiandrino, Claudio
Kantarci, Burak
Soyata, Tolga
Kliazovich, Dzmitry
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
External co-authors :
yes
Language :
English
Title :
Intelligent Gaming for Mobile Crowd-Sensing Participants to Acquire Trustworthy Big Data in the Internet of Things
Publication date :
11 October 2017
Journal title :
IEEE Access
ISSN :
2169-3536
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), Piscataway, United States - New Jersey
Volume :
5
Pages :
22209 - 22223
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 15 January 2018

Statistics


Number of views
83 (4 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
63
Scopus citations®
without self-citations
39
OpenAlex citations
 
74
WoS citations
 
51

Bibliography


Similar publications



Contact ORBilu