Thèse de doctorat (Mémoires et thèses)
Populating Legal Ontologies using Information Extraction based on Semantic Role Labeling and Text Similarity
HUMPHREYS, Llio
2016
 

Documents


Texte intégral
LlBH-thesis-2016.pdf
Postprint Auteur (3.1 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
legal informatics; Law; Computer Science; ontologies; information extraction; legislation; recitals; Cosine Similarity; Semantic Role Labeling; structured norms; compliance; document management system; normalisation; norm types
Résumé :
[en] This thesis seeks to address the problem of the 'resource consumption bottleneck' of creating (legal) semantic technologies manually. It builds on research in legal theory, ontologies and natural language processing in order to semi-automatically normalise legislative text, extract definitions and structured norms, and link normative provisions to recitals. The output is intended to help make laws more accessible, understandable, and searchable in a legal document management system. Key contributions are: - an analysis of legislation and structured norms in legal ontologies and compliance systems in order to determine the kind of information that individuals and organisations require from legislation to understand their rights and duties; - an analysis of the semantic and structural challenges of legislative text for machine understanding; - a rule-based normalisation module to transform legislative text into regular sentences to facilitate natural language processing; - a Semantic Role Labeling based information extraction module to extract definitions and norms from legislation and represent them as structured norms in legal ontologies; - an analysis of the impact of recitals on the interpretation of legislative norms; - a Cosine Similarity based text similarity module to link recitals to relevant normative provisions; - a description of important challenges that have emerged from this research which may prove useful for future work in the extraction and linking of information from legislative text.
Disciplines :
Droit européen & international
Sciences informatiques
Auteur, co-auteur :
HUMPHREYS, Llio ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Langue du document :
Anglais
Titre :
Populating Legal Ontologies using Information Extraction based on Semantic Role Labeling and Text Similarity
Date de soutenance :
25 juillet 2016
Nombre de pages :
229
Institution :
Unilu - University of Luxembourg, Luxembourg, Luxembourg
Intitulé du diplôme :
Docteur en Informatique
Promoteur :
VAN DER TORRE, Leon 
Boella, Guido
SCHOMMER, Christoph  
Sartor, Giovanni
Palmirani, Monica
Baldoni, Matteo
Focus Area :
Computational Sciences
Law / European Law
Intitulé du projet de recherche :
3021215
Organisme subsidiant :
the National Research Fund (Fonds National de la Recherche)
Disponible sur ORBilu :
depuis le 31 décembre 2017

Statistiques


Nombre de vues
427 (dont 24 Unilu)
Nombre de téléchargements
1473 (dont 23 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu