[en] In this paper, we propose to detect an action as soon as possible and ideally before it is fully completed. The objective is to support the monitoring of surveillance videos for preventing criminal or terrorist attacks. For such a scenario, it is of importance to have not only high detection and recognition rates but also low time latency for the detection. Our solution consists in an adaptive sliding window approach in an online manner, which efficiently rejects irrelevant data. Furthermore, we exploit both spatial and temporal information by constructing feature vectors based on temporal blocks. For an added efficiency, only partial template actions are considered for the detection. The relationship between the template size and latency is experimentally evaluated. We show promising preliminary experimental results using Motion Capture data with a skeleton representation of the human body.