Article (Périodiques scientifiques)
Efficiently computing the likelihoods of cyclically interdependent risk scenarios
MULLER, Steve; Harpes, Carlo; LE TRAON, Yves et al.
2017In Computers and Security, 64, p. 59-68
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
master.pdf
Preprint Auteur (409.87 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Cyclic causal graphs; Cyclic dependencies; Dependency graph; Quantitative assessment; Risk analysis; Risk assessment; Risk management; Risk perception; Causal graph; Dependency graphs; Quantitative assessments; Quantitative risk assessment; Randomised algorithms; Risk monitoring; Risk scenarios
Résumé :
[en] Quantitative risk assessment provides a holistic view of risk in an organisation, which is, however, often biased by the fact that risk shared by several assets is encoded multiple times in a risk analysis. An apparent solution to this issue is to take all dependencies between assets into consideration when building a risk model. However, existing approaches rarely support cyclic dependencies, although assets that mutually rely on each other are encountered in many organisations, notably in critical infrastructures. To the best of our knowledge, no author has provided a provably efficient algorithm (in terms of the execution time) for computing the risk in such an organisation, notwithstanding that some heuristics exist. This paper introduces the dependency-aware root cause (DARC) model, which is able to compute the risk resulting from a collection of root causes using a poly-time randomised algorithm, and concludes with a discussion on real-time risk monitoring, which DARC supports by design. © 2016 Elsevier Ltd
Disciplines :
Sciences informatiques
Identifiants :
eid=2-s2.0-84994851035
Auteur, co-auteur :
MULLER, Steve ;  [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Harpes, Carlo;  itrust consulting s.à r.l., Luxembourg
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Gombault, Sylvain;  Telecom Bretagne, France
Bonnin, Jean-Marie;  Telecom Bretagne, France
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Efficiently computing the likelihoods of cyclically interdependent risk scenarios
Date de publication/diffusion :
2017
Titre du périodique :
Computers and Security
ISSN :
0167-4048
Maison d'édition :
An Imprint of Elsevier Science
Volume/Tome :
64
Pagination :
59-68
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Organisme subsidiant :
10239425, FNR, Fonds National de la Recherche Luxembourg
Disponible sur ORBilu :
depuis le 01 décembre 2017

Statistiques


Nombre de vues
176 (dont 4 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
5
OpenCitations
 
4
citations OpenAlex
 
5
citations WoS
 
5

Bibliographie


Publications similaires



Contacter ORBilu