Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization
TESSARO LUNARDI, Willian; VOOS, Holger
2018In 33rd ACM/SIGAPP Symposium On Applied Computing, Pau, France, April 9 - 13, 2018
Peer reviewed
 

Documents


Texte intégral
2018_SAC.pdf
Preprint Auteur (726.93 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Firefly algorithm; Genetic Algorithm; Combinatorial optimization; Flexible job-shop problem; Scheduling; Artificial Intelligence
Résumé :
[en] Flexible job-shop scheduling problem (FJSP) is one of the most challenging combinatorial optimization problems. FJSP is an extension of the classical job shop scheduling problem where an operation can be processed by several different machines. The FJSP contains two sub-problems, namely machine assignment problem and operation sequencing problem. In this paper, we propose and compare a discrete firefly algorithm (FA) and a genetic algorithm (GA) for the multi-objective FJSP. Three minimization objectives are considered, the maximum completion time, workload of the critical machine and total workload of all machines. Five well-known instances of FJSP have been used to evaluate the performance of the proposed algorithms. Comparisons among our methods and state-of-the-art algorithms are also provided. The experimental results demonstrate that the FA and GA have achieved improvements in terms of efficiency. Solutions obtained by both algorithms are comparable to those obtained by algorithms with local search. In addition, based on our initial experiments, results show that the proposed discrete firefly algorithm is feasible, more effective and efficient than our proposed genetic algorithm for solving multi-objective FJSP.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
TESSARO LUNARDI, Willian ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOOS, Holger  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization
Date de publication/diffusion :
avril 2018
Nom de la manifestation :
33rd ACM/SIGAPP Symposium On Applied Computing
Date de la manifestation :
09/04/2018 to 13/04/2018
Manifestation à portée :
International
Titre de l'ouvrage principal :
33rd ACM/SIGAPP Symposium On Applied Computing, Pau, France, April 9 - 13, 2018
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 30 novembre 2017

Statistiques


Nombre de vues
346 (dont 67 Unilu)
Nombre de téléchargements
1032 (dont 32 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu