Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Using Hidden Markov Models and Rule-based Sensor Mediation on Wearable eHealth Devices
NEYENS, Gilles; ZAMPUNIERIS, Denis
2017In Procedings of the 11th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Barcelona, Spain 12-16 November 2017
Peer reviewed
 

Documents


Texte intégral
UsingHiddenMarkovModelsandRulebasedSensorMediationonWearableeHealthDevices.pdf
Postprint Auteur (728.19 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Wearable devices; Conflict handling; Hidden Markov Model; Autonomic Computing; Rule-based Systems; Sensor Mediation; Proactive Computing
Résumé :
[en] Improvements in sensor miniaturization allow wearable devices to provide more functionality while also being more comfortable for users to wear. The Samsung Simband©, for example, has 6 different sensors Electrocardiogram (ECG), Photoplethysmogram (PPG), Galvanic Skin Response (GSR), Bio-Impedance (Bio-Z), Accelerometer and a thermometer as well as a modular sensor hub to easily add additional ones. This increased number of sensors for wearable devices opens new possibilities for a more precise monitoring of patients by integrating the data from the different sensors. This integration can be influenced by failing or malfunctioning sensors and noise. In this paper, we propose an approach that uses Hidden Markov Models (HMM) in combination with a rule-based engine to mediate among the different sensors’ data in order to allow the eHealth system to compute a diagnosis on the basis of the selected reliable sensors. We also show some preliminary results about the accuracy of the first stage of the proposed model.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
NEYENS, Gilles ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
ZAMPUNIERIS, Denis ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Using Hidden Markov Models and Rule-based Sensor Mediation on Wearable eHealth Devices
Date de publication/diffusion :
2017
Nom de la manifestation :
UBICOMM 2017 - 11th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
Organisateur de la manifestation :
IARIA
Lieu de la manifestation :
Barcelona, Espagne
Date de la manifestation :
November 2017
Manifestation à portée :
International
Titre de l'ouvrage principal :
Procedings of the 11th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Barcelona, Spain 12-16 November 2017
Maison d'édition :
IARIA
ISBN/EAN :
978-1-61208-598-2
Peer reviewed :
Peer reviewed
Commentaire :
Procedings of the 11th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Barcelona, Spain 12-16 November 2017
Disponible sur ORBilu :
depuis le 27 novembre 2017

Statistiques


Nombre de vues
221 (dont 13 Unilu)
Nombre de téléchargements
240 (dont 3 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu