Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Detecting and predicting outages in mobile networks with log data.
Gurbani, Vijay K.; Kushnir, Dan; Mendiratta, Veena B. et al.
2017In IEEE International Conference on Communications, ICC 2017
Peer reviewed
 

Documents


Texte intégral
07996706.pdf
Postprint Éditeur (697.35 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Modern cellular networks are complex systems offering a wide range of services and present challenges in detecting anomalous events when they do occur. The networks are engineered for high reliability and, hence, the data from these networks is predominantly normal with a small proportion being anomalous. From an operations perspective, it is important to detect these anomalies in a timely manner, to correct vulnerabilities in the network and preclude the occurrence of major failure events. The objective of our work is anomaly detection in cellular networks in near real-time to improve network performance and reliability. We use performance data from a 4G LTE network to develop a methodology for anomaly detection in such networks. Two rigorous prediction models are proposed: a non-parametric approach (Chi-Square test), and a parametric one (Gaussian Mixture Models). These models are trained to detect differences between distributions to classify a target distribution as belonging to a normal period or abnormal period with high accuracy. We discuss the merits between the approaches and show that both provide a more nuanced view of the network than simple thresh- olds of success/failure used by operators in production networks today.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Services and Data management research group (SEDAN)
Nokia Bell Labs
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Gurbani, Vijay K.;  Nokia Bell Labs
Kushnir, Dan;  Nokia Bell Labs
Mendiratta, Veena B.;  Nokia Bell Labs
Phadke, Chitra;  Nokia Bell Labs
FALK, Eric ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Detecting and predicting outages in mobile networks with log data.
Date de publication/diffusion :
mai 2017
Nom de la manifestation :
IEEE International Conference on Communications, ICC 2017
Organisateur de la manifestation :
IEEE
Date de la manifestation :
from 21-05-2017 to 25-05-2017
Manifestation à portée :
International
Titre de l'ouvrage principal :
IEEE International Conference on Communications, ICC 2017
ISBN/EAN :
978-1-4673-8999-0
Pagination :
1-7
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 06 novembre 2017

Statistiques


Nombre de vues
208 (dont 5 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
7
citations OpenAlex
 
13

Bibliographie


Publications similaires



Contacter ORBilu