[en] We propose a parametrized version of arity gap. The parametrized arity gap gap(f,l) of a function f: Aⁿ→B measures the minimum decrease in the number of essential variables of f when l consecutive identifications of pairs of essential variables are performed. We determine gap(f,l) for an arbitrary function f and a positive integer l. We also propose other variants of arity gap and discuss further problems pertaining to the effect of identification of variables on the number of essential variables of functions.
Disciplines :
Mathématiques
Identifiants :
UNILU:UL-CONFERENCE-2012-137
Auteur, co-auteur :
COUCEIRO, Miguel ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
LEHTONEN, Erkko ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
WALDHAUSER, Tamás ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
Gap vs. pag
Date de publication/diffusion :
2012
Nom de la manifestation :
42nd IEEE International Symposium on Multiple-Valued Logic
Lieu de la manifestation :
Victoria, BC, Canada
Date de la manifestation :
14-16 May 2012
Manifestation à portée :
International
Titre de l'ouvrage principal :
42nd IEEE International Symposium on Multiple-Valued Logic (ISMVL 2012)
Maison d'édition :
IEEE Computer Society, Los Alamitos, Etats-Unis - Californie
ISBN/EAN :
978-0-7695-4673-5
Pagination :
268-273
Peer reviewed :
Peer reviewed
Commentaire :
42nd IEEE International Symposium on Multiple-Valued Logic (ISMVL 2012)