[en] In civil engineering, silicone sealants are widely used in structural sealant glazing applications as an adhesively bonded connection between the glass panels and the building substructure. The current design concept does not take into account the actual stress state and the actual failure mechanism. Therefore, no information about the exact failure probability can be given. Alternative approaches, such as the Finite Element Analysis, also have major disadvantages due to the presence of singularities. Therefore, a method from Finite Fracture Mechanics, calibrated with experimental investigations on bulk material, is applied on silicone sealants, focusing on the shear failure mechanism. The procedure is validated using small scale tests such as simple shear and torsion tests.
Disciplines :
Civil engineering
Author, co-author :
STAUDT, Yves ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
ODENBREIT, Christoph ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Schneider, Jens; Technische Universität Darmstadt > Institute of Structural Mechanics and Design > Professor
Language :
English
Title :
Numerical simulation and Identification of the Failure Criterion for Structural Silicone