Article (Périodiques scientifiques)
A Scalable Parallel Cooperative Coevolutionary PSO Algorithm for Multi-objective Optimization
ATASHPENDAR, Arash; Dorronsoro, Bernabé; DANOY, Grégoire et al.
2017In Journal of Parallel and Distributed Computing
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
author_preprint_JPDC_CCMOEAs_PSO_Scalability.pdf
Preprint Auteur (754.73 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Metaheuristics; Particle swarm optimization; Cooperative; Coevolutionary; Parallelism
Résumé :
[en] We present a parallel multi-objective cooperative coevolutionary variant of the Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO) algorithm. The algorithm, called CCSMPSO, is the first multi-objective cooperative coevolutionary algorithm based on PSO in the literature. SMPSO adopts a strategy for limiting the velocity of the particles that prevents them from having erratic movements. This characteristic provides the algorithm with a high degree of reliability. In order to demonstrate the effectiveness of CCSMPSO, we compare our work with the original SMPSO and three different state-of-the-art multi-objective CC metaheuristics, namely CCNSGA-II, CCSPEA2 and CCMOCell, along with their original sequential counterparts. Our experiments indicate that our proposed solution, CCSMPSO, offers significant computational speedups, a higher convergence speed and better or comparable results in terms of solution quality, when evaluated against three other CC algorithms and four state-of-the-art optimizers (namely SMPSO, NSGA-II, SPEA2, and MOCell), respectively. We then provide a scalability analysis, which consists of two studies. First, we analyze how the algorithms scale when varying the problem size, i.e., the number of variables. Second, we analyze their scalability in terms of parallelization, i.e., the impact of using more computational cores on the quality of solutions and on the execution time of the algorithms. Three different criteria are used for making the comparisons, namely the quality of the resulting approximation sets, average computational time and the convergence speed to the Pareto front.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ATASHPENDAR, Arash ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Dorronsoro, Bernabé;  University of Cádiz, Spain > School of Engineering
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Scalable Parallel Cooperative Coevolutionary PSO Algorithm for Multi-objective Optimization
Date de publication/diffusion :
10 juin 2017
Titre du périodique :
Journal of Parallel and Distributed Computing
ISSN :
0743-7315
eISSN :
1096-0848
Maison d'édition :
Elsevier
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 13 juillet 2017

Statistiques


Nombre de vues
362 (dont 58 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
54
citations Scopus®
sans auto-citations
53
OpenCitations
 
27
citations OpenAlex
 
55
citations WoS
 
47

Bibliographie


Publications similaires



Contacter ORBilu