Thèse de doctorat (Mémoires et thèses)
Development and analysis of individual-based gut microbiome metabolic models
MAGNUSDOTTIR, Stefania
2017
 

Documents


Texte intégral
Magnusdottir_Thesis.pdf
Postprint Auteur (36.88 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Metabolic modeling; Gut microbiome; Comparative genomics
Résumé :
[en] The human gut microbiota plays a large role in the metabolism of our diet. These microorganisms can break down indigestible materials such as polysaccharides and convert them into metabolites that the human body can take up and utilize (e.g., vitamins, essential amino acids, and short-chain fatty acids). Disbalances in the gut microbiome have been associated with several diseases, including diabetes and obesity. However, little is known about the detailed metabolic crosstalk that occurs between individual organisms within the microbiome and between the microbiome and the human intestinal cells. Because of the complexity of the intestinal ecosystem, these interactions are difficult to determine using existing experimental methods. Constraint-based reconstruction and analysis (COBRA) can help identify the possible metabolic mechanisms at play in the human gut. By combining mathematical, computational, and experimental methods, we can generate hypotheses and design targeted experiments to elucidate the metabolic mechanisms in the gut microbiome. In this thesis, I first applied comparative genomics to analyze the biosynthesis pathways of eight B-vitamins in hundreds of human gut microbial species. The results suggested that many gut microbes do not synthesize any B-vitamins, that is, they depend on the host’s diet and neighboring bacteria for these essential nutrients. Second, I developed a semi-automatic reconstruction refinement pipeline that quickly generates biologically relevant genome-scale metabolic reconstructions (GENREs) of human gut microbes based on automatically generated metabolic reconstructions, comparative genomics data, and data extracted from biochemical experiments on the relevant organisms. The pipeline generated metabolically diverse reconstructions that maintain high accuracy with known biochemical data. Finally, the refined GENREs were combined with metagenomic data from individual stool samples to build personalized human gut microbiome metabolic reconstructions. The resulting large-scale microbiome models were both taxonomically and functionally diverse. The work presented in this thesis has enabled the generation of biologically relevant human gut microbiome metabolic reconstructions. Metabolic models resulting from such reconstructions can be applied to study metabolism within the human gut microbiome and between the gut microbiome and the human host. Additionally, they can be used to study the effects of different dietary components on the metabolic exchanges in the gut microbiome and the metabolic differences between healthy and diseased microbiomes.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB): Molecular Systems Physiology (Thiele Group)
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
MAGNUSDOTTIR, Stefania ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Langue du document :
Anglais
Titre :
Development and analysis of individual-based gut microbiome metabolic models
Date de soutenance :
22 juin 2017
Nombre de pages :
180
Institution :
Unilu - University of Luxembourg, Esch-sur-Alzette, Luxembourg
Intitulé du diplôme :
Docteur en Biologie
Promoteur :
Président du jury :
Membre du jury :
FLEMING, Ronan MT 
Lacroix, Christophe
Planes, Francisco
Focus Area :
Systems Biomedicine
Projet FnR :
FNR6951193 - Development Of A Computational Approach To The Metabolic Interactions Between Human And Its Gut Microbes., 2013 (01/09/2013-30/06/2017) - Stefania Magnusdottir
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 07 juillet 2017

Statistiques


Nombre de vues
370 (dont 26 Unilu)
Nombre de téléchargements
344 (dont 21 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu