Article (Périodiques scientifiques)
Financial interaction networks inferred from traded volumes
Zeng, Hong-Li; LEMOY, Rémi; Alava, Mikko
2014In Journal of Statistical Mechanics: Theory and Experiment, p. 07008-17
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Zeng_etal_JSTAT_2014.pdf
Postprint Éditeur (1.17 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
models of financial markets; network reconstruction; statistical inference; kinetic Ising models
Résumé :
[en] In order to use the advanced inference techniques available for Ising models, we transform complex data (real vectors) into binary strings, using local averaging and thresholding. This transformation introduces parameters, which must be varied to characterize the behaviour of the system. The approach is illustrated on financial data, using three inference methods-equilibrium, synchronous and asynchronous inference-to construct functional connections between stocks. We show that the traded volume information is enough to obtain well-known results about financial markets that use, however, presumably richer price information: collective behaviour ('market mode') and strong interactions within industry sectors. Synchronous and asynchronous Ising inference methods give results that are coherent with equilibrium ones and are more detailed since the obtained interaction networks are directed.
Disciplines :
Physique
Ingénierie mécanique
Auteur, co-auteur :
Zeng, Hong-Li;  Aalto Univ, Dept Appl Phys, Espoo, Finland.
LEMOY, Rémi ;  University of Luxembourg > Faculty of Language and Literature, Humanities, Arts and Education (FLSHASE) > Identités, Politiques, Sociétés, Espaces (IPSE)
Alava, Mikko;  Aalto Univ, Dept Appl Phys, Espoo, Finland.
Co-auteurs externes :
yes
Titre :
Financial interaction networks inferred from traded volumes
Date de publication/diffusion :
2014
Titre du périodique :
Journal of Statistical Mechanics: Theory and Experiment
eISSN :
1742-5468
Maison d'édition :
Iop Publishing Ltd, Bristol, Inconnu/non spécifié
Pagination :
P07008-17
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Finnish graduate school for Computational Science (FICS)
Centre of Excellence program of the Academy of Finland
Commentaire :
We thank Matteo Marsili for providing the data, and acknowledge interesting discussions with Erik Aurell, Matteo Marsili, Iacopo Mastromatteo, Alexander Mozeika and Onur Dikmen, as well as helpful suggestions by the editor and two anonymous referees. This work was supported by funding from the Finnish graduate school for Computational Science (FICS) and the Centre of Excellence program of the Academy of Finland, for the COMP and COIN Centres. We acknowledge the computational resources provided by the Aalto Science-IT project.
Disponible sur ORBilu :
depuis le 04 juillet 2017

Statistiques


Nombre de vues
161 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
8
citations OpenAlex
 
7
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu