Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Enhanced Trajectory-based Action Recognition using Human Pose
PAPADOPOULOS, Konstantinos; GONCALVES ALMEIDA ANTUNES, Michel; AOUADA, Djamila et al.
2017In IEEE International Conference on Image Processing, Beijing 17-20 Spetember 2017
Peer reviewed
 

Documents


Texte intégral
camera-ready_icip2017.pdf
Postprint Auteur (1.18 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Action recognition; spatio-temporal features; Bag-of-Words; dense trajectories
Résumé :
[en] Action recognition using dense trajectories is a popular concept. However, many spatio-temporal characteristics of the trajectories are lost in the final video representation when using a single Bag-of-Words model. Also, there is a significant amount of extracted trajectory features that are actually irrelevant to the activity being analyzed, which can considerably degrade the recognition performance. In this paper, we propose a human-tailored trajectory extraction scheme, in which trajectories are clustered using information from the human pose. Two configurations are considered; first, when exact skeleton joint positions are provided, and second, when only an estimate thereof is available. In both cases, the proposed method is further strengthened by using the concept of local Bag-of-Words, where a specific codebook is generated for each skeleton joint group. This has the advantage of adding spatial human pose awareness in the video representation, effectively increasing its discriminative power. We experimentally compare the proposed method with the standard dense trajectories approach on two challenging datasets.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
PAPADOPOULOS, Konstantinos ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
GONCALVES ALMEIDA ANTUNES, Michel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Enhanced Trajectory-based Action Recognition using Human Pose
Date de publication/diffusion :
2017
Nom de la manifestation :
2017 IEEE International Conference on Image Processing
Lieu de la manifestation :
Beijing, Chine
Date de la manifestation :
September 17-20, 2017
Manifestation à portée :
International
Titre de l'ouvrage principal :
IEEE International Conference on Image Processing, Beijing 17-20 Spetember 2017
Peer reviewed :
Peer reviewed
Projet FnR :
FNR10415355 - 3d Action Recognition Using Refinement And Invariance Strategies For Reliable Surveillance, 2015 (01/06/2016-31/05/2019) - Bjorn Ottersten
Disponible sur ORBilu :
depuis le 02 juin 2017

Statistiques


Nombre de vues
324 (dont 58 Unilu)
Nombre de téléchargements
14 (dont 12 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
8

Bibliographie


Publications similaires



Contacter ORBilu