Article (Périodiques scientifiques)
Payload-based fleet optimization for rail cars in the chemical industry
Kallrath, J.; KLOSTERHALFEN, Steffen; Walter, M. et al.
2017In European Journal of Operational Research, 259 (1), p. 113 - 129
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Kallrath_etal_2017_Payload-based fleet optimization for rail cars in the chemical industry.pdf
Postprint Éditeur (623.87 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Rail car logistics; Fleet size; Payload; Inventory
Résumé :
[en] Rail car fleets are significant investments in the chemical industry. Therefore, chemical companies constantly try to optimize the fleets as part of major working capital optimization initiatives. We study a complex rail car fleet optimization problem observed at BASF and an approach to tackle the problem in a sequential way. We develop a mixed integer non-linear programming model to derive suggestions to the questions: (i) How many different rail car sizes in terms of volume are appropriate and what are their optimal volumes? and (ii) For each volume, what is the optimal number of rail cars of this size? The model formulation takes into account various real-world restrictions concerning the volume and weight of the rail cars as well as the tracks that they run on. We propose two solution methods. First, we reformulate the non-linear terms, which results in a mixed integer linear programming (MILP) model. This model can be solved in a reasonable amount of time, if the number of different rail car sizes is small (2 or 3). Second, we develop a two-step approach that uses an enumeration scheme in the first stage to find good initial solutions that are fed into the MILP formulation in the second stage. This approach solves the model for larger numbers of different rail car sizes (4 or 5). Through the fleet redesign BASF has realized cost savings of nearly 2 million euros so far.
Disciplines :
Production, distribution & gestion de la chaîne logistique
Auteur, co-auteur :
Kallrath, J.
KLOSTERHALFEN, Steffen ;  University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Center for Research in Economic Analysis (CREA) > Luxembourg Centre for Logistics and Supply Chain Management (LCL)
Walter, M.
Fischer, G.
Blackburn, R.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Payload-based fleet optimization for rail cars in the chemical industry
Date de publication/diffusion :
2017
Titre du périodique :
European Journal of Operational Research
ISSN :
0377-2217
eISSN :
1872-6860
Maison d'édition :
Elsevier Science, Amsterdam, Pays-Bas
Volume/Tome :
259
Fascicule/Saison :
1
Pagination :
113 - 129
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 21 avril 2017

Statistiques


Nombre de vues
184 (dont 25 Unilu)
Nombre de téléchargements
3 (dont 2 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
9
OpenCitations
 
8
citations OpenAlex
 
9
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu