Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Unsupervised Vanishing Point Detection and Camera Calibration from a Single Manhattan Image with Radial Distortion
GONCALVES ALMEIDA ANTUNES, Michel; Barreto, Joao P.; AOUADA, Djamila et al.
2017In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
Peer reviewed
 

Documents


Texte intégral
CamReady.pdf
Preprint Auteur (20.36 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] The article concerns the automatic calibration of a camera with radial distortion from a single image. It is known that, under the mild assumption of square pixels and zero skew, lines in the scene project into circles in the image, and three lines suffice to calibrate the camera up to an ambiguity between focal length and radial distortion. The calibration results highly depend on accurate circle estimation, which is hard to accomplish, because lines tend to project into short circular arcs. To overcome this problem, we show that, given a short circular arc edge, it is possible to robustly determine a line that goes through the center of the corresponding circle. These lines, henceforth called Lines of Circle Centres (LCCs), are used in a new method that detects sets of parallel lines and estimates the calibration parameters, including the center and amount of distortion, focal length, and camera orientation with respect to the Manhattan frame. Extensive experiments in both semi-synthetic and real images show that our algorithm outperforms state- of-the-art approaches in unsupervised calibration from a single image, while providing more information.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GONCALVES ALMEIDA ANTUNES, Michel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Barreto, Joao P.;  Institute of Systems and Robotics (ISR) > University of Coimbra
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Unsupervised Vanishing Point Detection and Camera Calibration from a Single Manhattan Image with Radial Distortion
Date de publication/diffusion :
2017
Nom de la manifestation :
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Date de la manifestation :
21-07-2017 to 26-07-2017
Titre de l'ouvrage principal :
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 05 avril 2017

Statistiques


Nombre de vues
592 (dont 31 Unilu)
Nombre de téléchargements
696 (dont 21 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu