[en] Privacy issues of recommender systems have become a hot topic for the society as such systems are appearing in every corner of our life. In contrast to the fact that many secure multi-party computation protocols have been proposed to prevent information leakage in the process of recommendation computation, very little has been done to restrict the information leakage from the recommendation results. In this paper, we apply the differential privacy concept to neighborhood-based recommendation methods (NBMs) under a probabilistic framework. We first present a solution, by directly calibrating Laplace noise into the training process, to differential-privately find the maximum a posteriori parameters similarity. Then we connect differential privacy to NBMs by exploiting a recent observation that sampling from the scaled posterior distribution of a Bayesian model results in provably differentially private systems. Our experiments show that both solutions allow promising accuracy with a modest privacy budget, and the second solution yields better accuracy if the sampling asymptotically converges. We also compare our solutions to the recent differentially private matrix factorization (MF) recommender systems, and show that our solutions achieve better accuracy when the privacy budget is reasonably small. This is an interesting result because MF systems often offer better accuracy when differential privacy is not applied.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
WANG, Jun ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Tang, Qiang
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Differentially Private Neighborhood-based Recommender Systems
Titre traduit :
[en] Differentially Private Neighborhood-based Recommender Systems
Date de publication/diffusion :
mai 2017
Nom de la manifestation :
32nd IFIP Information Security & Privacy Conference
Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM (2016)
Ahn, S., Korattikara, A., Liu, N., Rajan, S., Welling, M.: Large-scale distributed bayesian matrix factorization using stochastic gradient MCMC. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 9-18. ACM (2015)
Beimel, A., Brenner, H., Kasiviswanathan, S.P., Nissim, K.: Bounds on the sample complexity for private learning and private data release. Mach. Learn. 94(3), 401-437 (2014)
Berlioz, A., Friedman, A., Kaafar, M.A., Boreli, R., Berkovsky, S.: Applying differential privacy to matrix factorization. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 107-114. ACM (2015)
Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “You might also like:” privacy risks of collaborative filtering. In: 2011 IEEE Symposium on Security and Privacy, pp. 231-246. IEEE (2011)
Chen, T., Fox, E.B., Guestrin, C.: Stochastic gradient Hamiltonian Monte Carlo. In: ICML, pp. 1683-1691 (2014)
Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107-144. Springer, Heidelberg (2011)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265-284. Springer, Heidelberg (2006). doi:10.1007/1168187814
Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3-4), 211-407 (2014)
Guerraoui, R., Kermarrec, A.-M., Patra, R., Taziki, M.: D2P: distance-based differential privacy in recommenders. Proc. VLDB Endow. 8(8), 862-873 (2015)
Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793-826 (2011)
Koren, Y., Bell, R., Volinsky, C., et al.: Matrix factorization techniques for recommender systems. Computer 42(8), 30-37 (2009)
Liu, Z., Wang, Y.-X., Smola, A.: Fast differentially private matrix factorization. In: Proceedings of the 9th ACM Conference on Recommender Systems. ACM (2015)
McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the netflix prize contenders. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2009)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 94-103. IEEE (2007)
Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness. ACM Trans. Internet Technol. (TOIT) 7(4), 23 (2007)
Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symposium on Security and Privacy. IEEE (2008)
Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacypreserving matrix factorization. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 801-812. ACM (2013)
Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: Third IEEE International Conference on Data Mining (ICDM 2003), pp. 625-628. IEEE (2003)
Polat, H., Du, W.: Achieving private recommendations using randomized response techniques. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 637-646. Springer, Heidelberg (2006). doi:10.1007/ 11731139_73
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press (2009)
Rossky, P., Doll, J., Friedman, H.: Brownian dynamics as smart monte carlo simulation. J. Chem. Phys. 69(10), 4628-4633 (1978)
Sato, I., Nakagawa, H.: Approximation analysis of stochastic gradient langevin dynamics by using Fokker-Planck equation and Ito process. In: ICML (2014)
Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)
Tang, Q., Wang, J.: Privacy-preserving context-aware recommender systems: analysis and new solutions. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 101-119. Springer, Cham (2015). doi:10.1007/978-3-319-24177-7_6
Töscher, A., Jahrer, M., Legenstein, R.: Improved neighborhood-based algorithms for large-scale recommender systems. In: Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems, p. 4. ACM (2008)
Vollmer, S.J., Zygalakis, K.C., et al.: (Non-) asymptotic properties of stochastic gradient langevin dynamics (2015). arXiv preprint arXiv:1501.00438
Wang, J., Tang, Q.: A probabilistic view of neighborhood-based recommendation methods (2016). https://arxiv.org/abs/1701.01250
Wang, Y.-X., Fienberg, S.E., Smola, A.: Privacy for free: posterior sampling and stochastic gradient monte carlo (2015)
Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: Blurme: inferring and obfuscating user gender based on ratings. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 195-202. ACM (2012)
Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 681-688 (2011)
Zhu, T., Ren, Y., Zhou, W., Rong, J., Xiong, P.: An effective privacy preserving algorithm for neighborhood-based collaborative filtering. Future Gener. Comput. Syst. 36, 142-155 (2014)