Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Differentially Private Neighborhood-based Recommender Systems
WANG, Jun; Tang, Qiang
2017In IFIP Information Security & Privacy Conference
Peer reviewed
 

Documents


Texte intégral
dpnbrs.pdf
Preprint Auteur (1 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Differential Privacy; Recommender Systems
Résumé :
[en] Privacy issues of recommender systems have become a hot topic for the society as such systems are appearing in every corner of our life. In contrast to the fact that many secure multi-party computation protocols have been proposed to prevent information leakage in the process of recommendation computation, very little has been done to restrict the information leakage from the recommendation results. In this paper, we apply the differential privacy concept to neighborhood-based recommendation methods (NBMs) under a probabilistic framework. We first present a solution, by directly calibrating Laplace noise into the training process, to differential-privately find the maximum a posteriori parameters similarity. Then we connect differential privacy to NBMs by exploiting a recent observation that sampling from the scaled posterior distribution of a Bayesian model results in provably differentially private systems. Our experiments show that both solutions allow promising accuracy with a modest privacy budget, and the second solution yields better accuracy if the sampling asymptotically converges. We also compare our solutions to the recent differentially private matrix factorization (MF) recommender systems, and show that our solutions achieve better accuracy when the privacy budget is reasonably small. This is an interesting result because MF systems often offer better accuracy when differential privacy is not applied.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
WANG, Jun ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Tang, Qiang
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Differentially Private Neighborhood-based Recommender Systems
Titre traduit :
[en] Differentially Private Neighborhood-based Recommender Systems
Date de publication/diffusion :
mai 2017
Nom de la manifestation :
32nd IFIP Information Security & Privacy Conference
Organisateur de la manifestation :
IFIP Information Security & Privacy Conference
Lieu de la manifestation :
Rome, Italie
Date de la manifestation :
from 5-29-2017 to 31-5-2017
Manifestation à portée :
International
Titre de l'ouvrage principal :
IFIP Information Security & Privacy Conference
Maison d'édition :
Springer
Pagination :
14
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Commentaire :
Best Student Paper award nominated
Disponible sur ORBilu :
depuis le 13 mars 2017

Statistiques


Nombre de vues
172 (dont 17 Unilu)
Nombre de téléchargements
203 (dont 8 Unilu)

citations Scopus®
 
16
citations Scopus®
sans auto-citations
15

Bibliographie


Publications similaires



Contacter ORBilu