Article (Périodiques scientifiques)
The Challenge of Non-Technical Loss Detection using Artificial Intelligence: A Survey
GLAUNER, Patrick; MEIRA, Jorge Augusto; VALTCHEV, Petko et al.
2017In International Journal of Computational Intelligence Systems, 10 (1), p. 760-775
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
The Challenge of Non-Technical Loss Detection Using Artificial Intelligence A Survey.pdf
Postprint Éditeur (539.83 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Covariate shift; Electricity theft; Expert systems; Machine learning; Non-technical losses; Stochastic processes
Résumé :
[en] Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GLAUNER, Patrick ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
MEIRA, Jorge Augusto  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VALTCHEV, Petko ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Bettinger, Franck;  CHOICE Technologies Holding Sàrl
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
The Challenge of Non-Technical Loss Detection using Artificial Intelligence: A Survey
Date de publication/diffusion :
2017
Titre du périodique :
International Journal of Computational Intelligence Systems
ISSN :
1875-6891
eISSN :
1875-6883
Volume/Tome :
10
Fascicule/Saison :
1
Pagination :
760-775
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 07 mars 2017

Statistiques


Nombre de vues
301 (dont 15 Unilu)
Nombre de téléchargements
397 (dont 7 Unilu)

citations Scopus®
 
175
citations Scopus®
sans auto-citations
171
OpenCitations
 
127
citations OpenAlex
 
213
citations WoS
 
139

Bibliographie


Publications similaires



Contacter ORBilu