Article (Scientific journals)
Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature
LI, Yi
2015In Nonlinear Analysis: Theory, Methods and Applications, 113, p. 1-32
Peer Reviewed verified by ORBi
 

Files


Full Text
Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature.pdf
Publisher postprint (577.23 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Cheng–Yau estimate; Li–Yau estimate; Hamilton estimate; Bakry–Emery Ricci curvature
Abstract :
[en] In this paper we derive Cheng–Yau, Li–Yau, Hamilton estimates for Riemannian manifolds with Bakry–Emery–Ricci curvature bounded from below, and also global and local upper bounds, in terms of Bakry–Emery–Ricci curvature, for the Hessian of positive and bounded solutions of the weighted heat equation on a closed Riemannian manifold.
Disciplines :
Mathematics
Author, co-author :
LI, Yi ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit ; Shanghai Jiao Tong University > Mathematics
External co-authors :
no
Language :
English
Title :
Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature
Publication date :
January 2015
Journal title :
Nonlinear Analysis: Theory, Methods and Applications
ISSN :
0362-546X
eISSN :
1873-5215
Publisher :
Elsevier Science, Oxford, United Kingdom
Volume :
113
Pages :
1-32
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 02 February 2017

Statistics


Number of views
96 (9 by Unilu)
Number of downloads
257 (3 by Unilu)

Scopus citations®
 
40
Scopus citations®
without self-citations
40
OpenCitations
 
22
WoS citations
 
35

Bibliography


Similar publications



Contact ORBilu