Thèse de doctorat (Mémoires et thèses)
Cohomologies and derived brackets of Leibniz algebras
CAI, Xiongwei
2016
 

Documents


Texte intégral
PhDThesisXiongweiCAI.pdf
Postprint Auteur (781.89 kB)
Télécharger
Annexes
DefenseBeamer.pdf
(488.02 kB)
PDF file of slides on the defense day
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Leibniz algebra; Courant-Dorfman algebra; standard cohomology; naive cohomology; crossed product; derived bracket; equivariant cohomology; generalized action
Résumé :
[en] In this thesis, we work on the structure of Leibniz algebras and develop cohomology theories for them. The motivation comes from: • Roytenberg, Stienon-Xu and Ginot-Grutzmann's work on standard and naive cohomology of Courant algebroids (Courant-Dorfman algebras). • Kosmann-Schwarzbach, Roytenberg and Alekseev-Xu's constructions of derived brackets for Courant algebroids. • The classical equivariant cohomology theory and the generalized geometry theory. This thesis consists of three parts: 1. We introduce standard cohomology and naive cohomology for a Leibniz algebra. We discuss their properties and show that they are isomorphic. By similar methods, we prove a generalization of Ginot-Grutzmann's theorem on transitive Courant algebroids, which was conjectured by Stienon-Xu. The relation between standard complexes of a Leibniz algebra and its corresponding crossed product is also discussed. 2. We observe a canonical 3-cochain in the standard complex of a Leibniz algebra. We construct a bracket on the subspace consisting of so-called representable cochains, and prove that the subspace becomes a graded Poisson algebra. Finally we show that for a fat Leibniz algebra, the Leibniz bracket can be represented as a derived bracket. 3. In spired by the notion of a Lie algebra action and the idea of generalized geometry, we introduce the notion of a generalized action of a Lie algebra g on a smooth manifold M, to be a homomorphism of Leibniz algebras from g to the generalized tangent bundle TM+T*M. We define the interior product and Lie derivative so that the standard complex of TM+T*M becomes a g differential algebra, then we discuss its equivariant cohomology. We also study the equivariant cohomology for a subcomplex of a Leibniz complex.
Disciplines :
Mathématiques
Auteur, co-auteur :
CAI, Xiongwei ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
Cohomologies and derived brackets of Leibniz algebras
Date de soutenance :
13 décembre 2016
Institution :
Unilu - University of Luxembourg, Luxembourg
Intitulé du diplôme :
Docteur en Mathématiques
Président du jury :
Membre du jury :
Liu, Zhangju
Xu, Ping
Laurent-Gengoux, Camille
Disponible sur ORBilu :
depuis le 11 janvier 2017

Statistiques


Nombre de vues
275 (dont 17 Unilu)
Nombre de téléchargements
239 (dont 11 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu