Character variety; Orbifold; Irreducible representations; Projective representations; Singularities
Résumé :
[en] In this thesis, we want to understand some singularities in the character variety. In a first chapter, we justify that the characters of irreducible representations from a Fuchsian group to a complex semi-simple Lie group is an orbifold. The orbifold locus is, then, the characters of bad representations. In the second chapter, we focus on the case where the Lie group is PSL(p,C) with p a prime number. In particular we give an explicit description of this locus. In the third and fourth chapter, we describe the isotropy groups (i.e. the centralizers of bad subgroups) arising in the cases when the Lie group is a quotient SL(n,C) (third chapter) and when the Lie group is a quotient of Spin(n,C) in the fourth chapter.
Disciplines :
Mathématiques
Auteur, co-auteur :
GUERIN, Clément ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Français
Titre :
Singularités orbifoldes de la variété des caractères
Titre traduit :
[en] Orbifold singularities of the character variety
Date de soutenance :
juin 2016
Nombre de pages :
249
Institution :
Université de Strasbourg, Strasbourg, France
Intitulé du diplôme :
Docteur en Mathématiques
Promoteur :
Guichard, Olivier
Président du jury :
Heusener, Michael
Membre du jury :
Falbel, Elisha
Lawton, Sean
Souto, Juan
Fock, Vladimir
Commentaire :
The thesis is entirely written in French. It is available on the usual repository of French Ph.D. Thesis TEL : https://tel.archives-ouvertes.fr/tel-01330872.