Article (Périodiques scientifiques)
Hi-POD solution of parametrized fluid dynamics problems: preliminary results
BAROLI, Davide; Cova, Maria Cristina; Perotto, Simona et al.
2018In MS&A series, MS&A series (3)
Peer reviewed
 

Documents


Texte intégral
Model+Reduction+of+Parametrized+Systems (1).pdf
Postprint Éditeur (696.07 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
model reduction; surrogate model; fluid dynamics
Résumé :
[en] Numerical modeling of fluids in pipes or network of pipes (like in the circulatory system) has been recently faced with new methods that exploit the specific nature of the dynamics, so that a one dimensional axial mainstream is enriched by local secondary transverse components [4, 16, 18]. These methods - under the name of Hi-Mod approximation - construct a solution as a finite element axial discretization, completed by a spectral approximation of the transverse dynamics. It has been demonstrated that Hi-Mod reduction significantly accelerates the computations without com- promising the accuracy. In view of variational data assimilation procedures (or, more in general, control problems), it is crucial to have efficient model reduction techniques to rapidly solve, for instance, a parametrized problem for several choices of the parameters of interest. In this work, we present some preliminary results merging Hi-Mod techniques with a classical Proper Orthogonal Decomposition (POD) strategy. We name this new approach as Hi-POD model reduction. We demonstrate the efficiency and the reliability of Hi-POD on multiparameter advection-diffusion-reaction problems as well as on the incompressible Navier-Stokes equations, both in a steady and in an unsteady setting.
Disciplines :
Mathématiques
Auteur, co-auteur :
BAROLI, Davide  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Cova, Maria Cristina ;  Mathematics Department > Politecnico di Milano > MsC.
Perotto, Simona ;  Politecnico di Milano > Mathematics Department > Full Professor in Numerical Analysis
Sala, Lorenzo ;  Politecnico di Milano > Mathematics Department > PhD student at University of Strasburg
Veneziani, Alessandro ;  Emory University, Atlanta, GA USA. > Department of Mathematics and Computer Science > Professor
 Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Hi-POD solution of parametrized fluid dynamics problems: preliminary results
Date de publication/diffusion :
2018
Titre du périodique :
MS&A series
Maison d'édition :
Springer
Titre particulier du numéro :
Model Reduction of Parametrized Systems III
Volume/Tome :
MS&A series
Fascicule/Saison :
3
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Intitulé du projet de recherche :
Hierarchical model reduction techniques for incompressible fluid dynamics and fluid-structure interaction problems- DMS-1419060
Organisme subsidiant :
NSF - National Science Foundation
Disponible sur ORBilu :
depuis le 09 décembre 2016

Statistiques


Nombre de vues
224 (dont 9 Unilu)
Nombre de téléchargements
307 (dont 8 Unilu)

OpenCitations
 
4
citations OpenAlex
 
13

Bibliographie


Publications similaires



Contacter ORBilu