Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Neighborhood Features Help Detecting Non-Technical Losses in Big Data Sets
GLAUNER, Patrick; MEIRA, Jorge Augusto; Dolberg, Lautaro et al.
2016In Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing Applications and Technologies (BDCAT 2016)
Peer reviewed
 

Documents


Texte intégral
Neighborhood Features Help Detecting Non-Technical Losses in Big Data Sets.pdf
Postprint Éditeur (788.72 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Data mining; Electricity theft detection; Feature engineering; Feature selection; Machine learning; Non-technical losses; Time series classification
Résumé :
[en] Electricity theft occurs around the world in both developed and developing countries and may range up to 40% of the total electricity distributed. More generally, electricity theft belongs to non-technical losses (NTL), which occur during the distribution of electricity in power grids. In this paper, we build features from the neighborhood of customers. We first split the area in which the customers are located into grids of different sizes. For each grid cell we then compute the proportion of inspected customers and the proportion of NTL found among the inspected customers. We then analyze the distributions of features generated and show why they are useful to predict NTL. In addition, we compute features from the consumption time series of customers. We also use master data features of customers, such as their customer class and voltage of their connection. We compute these features for a Big Data base of 31M meter readings, 700K customers and 400K inspection results. We then use these features to train four machine learning algorithms that are particularly suitable for Big Data sets because of their parallelizable structure: logistic regression, k-nearest neighbors, linear support vector machine and random forest. Using the neighborhood features instead of only analyzing the time series has resulted in appreciable results for Big Data sets for varying NTL proportions of 1%-90%. This work can therefore be deployed to a wide range of different regions.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GLAUNER, Patrick ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
MEIRA, Jorge Augusto  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Dolberg, Lautaro;  CHOICE Technologies Holding Sàrl
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Bettinger, Franck;  CHOICE Technologies Holding Sàrl
Rangoni, Yves;  CHOICE Technologies Holding Sàrl
Duarte, Diogo;  CHOICE Technologies Holding Sàrl
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Neighborhood Features Help Detecting Non-Technical Losses in Big Data Sets
Date de publication/diffusion :
2016
Nom de la manifestation :
3rd IEEE/ACM International Conference on Big Data Computing Applications and Technologies (BDCAT 2016)
Lieu de la manifestation :
Shanghai, Chine
Date de la manifestation :
from 06-12-2016 to 09-12-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing Applications and Technologies (BDCAT 2016)
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 07 octobre 2016

Statistiques


Nombre de vues
216 (dont 11 Unilu)
Nombre de téléchargements
310 (dont 5 Unilu)

citations Scopus®
 
43
citations Scopus®
sans auto-citations
38
OpenCitations
 
20
citations OpenAlex
 
34
citations WoS
 
23

Bibliographie


Publications similaires



Contacter ORBilu