Paper published in a book (Scientific congresses, symposiums and conference proceedings)
A Clustering Approach using Weighted Similarity Majority Margins
BISDORFF, Raymond; Meyer, Patrick; OLTEANU, Alexandru
2011In Advanced Data Mining and Applications ADMA, Beijing spring 2013
Peer reviewed
 

Files


Full Text
ADMA2011.pdf
Author preprint (272.81 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Multiple Criteria Clustering; Bipolar-valued Similarity; Meta-heuristic Algorithm
Abstract :
[en] We propose a meta-heuristic for clustering objects that are described on multiple incommensurable attributes of nominal, ordinal and/or cardinal type. Our approach makes use of an innovative bipolar-valued dual similarity-dissimilarity relation characterized by pairwise weighted majority margins of similar minus dissimilar attribute evaluations. The clustering is computed in two steps. First, an evolutionary algorithm searches for a suitable subset of maximal similarity cliques that will best serve as cluster cores. In a second step, we construct with a greedy heuristic, around these initial cluster cores, a corresponding final partition which best fits the given bipolar-valued similarity relation.
Disciplines :
Computer science
Identifiers :
UNILU:UL-CONFERENCE-2012-060
Author, co-author :
BISDORFF, Raymond ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Meyer, Patrick;  Télécom Bretagne, France
OLTEANU, Alexandru ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
External co-authors :
yes
Language :
English
Title :
A Clustering Approach using Weighted Similarity Majority Margins
Publication date :
2011
Event name :
ADMA 2011
Event place :
Beijing, China
Event date :
17-19 December 2011
Audience :
International
Main work title :
Advanced Data Mining and Applications ADMA, Beijing spring 2013
Publisher :
Springer-Verlag
ISBN/EAN :
978-3-642-25853-4
Collection name :
LNAI 7120
Pages :
15-28
Peer reviewed :
Peer reviewed
Commentary :
LNAI 7120 Part I Advanced Data Mining and Applications ADMA 201 J. Tang et al. (Eds)
Available on ORBilu :
since 22 April 2013

Statistics


Number of views
96 (1 by Unilu)
Number of downloads
192 (0 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
1
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBilu