Reference : Data Quality Assessment of Maintenance Reporting Procedures
Scientific journals : Article
Engineering, computing & technology : Computer science
Computational Sciences
Data Quality Assessment of Maintenance Reporting Procedures
Madhikermi, Manik mailto [Aalto University > School of Science > > Msc]
Kubler, Sylvain mailto [University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > >]
Robert, Jérémy mailto [University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > >]
Buda, Andrea mailto [Aalto University > School of Science > > Msc]
Främling, Kary mailto [Aalto University > School of Science > > Prof.]
Expert Systems with Applications
Pergamon Press - An Imprint of Elsevier Science
Yes (verified by ORBilu)
[en] Data Quality ; Information Quality ; Multi-Criteria Decision Making ; Analytic Hierarchy Process ; Decision Support Systems ; Maintenance
[en] Today’s largest and fastest growing companies’ assets are no longer physical, but rather digital (software, algorithms...). This is all the more true in the manufacturing, and particularly in the maintenance sector where quality of enterprise maintenance services are closely linked to the quality of maintenance data reporting procedures. If quality of the reported data is too low, it can results in wrong decision-making and loss of money. Furthermore, various maintenance experts are involved and directly concerned about the quality of enterprises’ daily maintenance data reporting (e.g., maintenance planners, plant managers...), each one having specific needs and responsibilities. To address this Multi-Criteria Decision Making (MCDM) problem, and since data quality is hardly considered in existing expert maintenance systems, this paper develops a Maintenance Reporting Quality Assessment (MRQA) dashboard that enables any company stakeholder to easily – and in real-time – assess/rank company branch offices in terms of maintenance reporting quality. From a theoretical standpoint, AHP is used to integrate various data quality dimensions as well as expert preferences. A use case describes how the proposed MRQA dashboard is being used by a Finnish multinational equipment manufacturer to assess and enhance reporting practices in a specific or a group of branch offices.
Researchers ; Professionals ; Students ; General public
H2020 ; 688203 - bIoTope - Building an IoT OPen innovation Ecosystem for connected smart objects
FnR ; FNR9095399 > Sylvain Kubler > > Internet of Things for Context-aware Building Energy & Health Management > 01/07/2015 > 30/06/2017 > 2014

File(s) associated to this reference

Fulltext file(s):

Open access
Kubler_AuthorVersion.pdfAuthor preprint1.04 MBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.