Article (Périodiques scientifiques)
Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets.
Brown, Marie; Wedge, David C.; Goodacre, Royston et al.
2011In Bioinformatics, 27 (8), p. 1108-12
Peer reviewed
 

Documents


Texte intégral
btr079.pdf
Postprint Éditeur (99.97 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Chromatography, Liquid; Mass Spectrometry; Metabolomics/methods; Software; Workflow
Résumé :
[en] MOTIVATION: The study of metabolites (metabolomics) is increasingly being applied to investigate microbial, plant, environmental and mammalian systems. One of the limiting factors is that of chemically identifying metabolites from mass spectrometric signals present in complex datasets. RESULTS: Three workflows have been developed to allow for the rapid, automated and high-throughput annotation and putative metabolite identification of electrospray LC-MS-derived metabolomic datasets. The collection of workflows are defined as PUTMEDID_LCMS and perform feature annotation, matching of accurate m/z to the accurate mass of neutral molecules and associated molecular formula and matching of the molecular formulae to a reference file of metabolites. The software is independent of the instrument and data pre-processing applied. The number of false positives is reduced by eliminating the inaccurate matching of many artifact, isotope, multiply charged and complex adduct peaks through complex interrogation of experimental data. AVAILABILITY: The workflows, standard operating procedure and further information are publicly available at http://www.mcisb.org/resources/putmedid.html. CONTACT: warwick.dunn@manchester.ac.uk.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Brown, Marie
Wedge, David C.
Goodacre, Royston
Kell, Douglas B.
Baker, Philip N.
Kenny, Louise C.
Mamas, Mamas A.
NEYSES, Ludwig ;  University of Luxembourg > Research Office
Dunn, Warwick B.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets.
Date de publication/diffusion :
2011
Titre du périodique :
Bioinformatics
ISSN :
1367-4803
eISSN :
1367-4811
Volume/Tome :
27
Fascicule/Saison :
8
Pagination :
1108-12
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 04 juillet 2016

Statistiques


Nombre de vues
126 (dont 3 Unilu)
Nombre de téléchargements
115 (dont 1 Unilu)

citations Scopus®
 
178
citations Scopus®
sans auto-citations
135
OpenCitations
 
158
citations OpenAlex
 
192
citations WoS
 
172

Bibliographie


Publications similaires



Contacter ORBilu