Article (Périodiques scientifiques)
Photoelectrochemical Screening of Solar Cell Absorber Layers: Electron Transfer Kinetics and Surface Stabilization
COLOMBARA, Diego; DALE, Phillip; Kissling, Gabriela P. et al.
2016In Journal of Physical Chemistry. C, Nanomaterials and interfaces
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Photoelectrochemical Screening of Solar Cell Absorber Layers - Electron Transfer Kinetics and Surface Stabilization.pdf
Postprint Éditeur (2.07 MB)
Demander un accès
Parties de texte intégral
Photoelectrochemical Screening of Solar Cell Absorber Layers - Electron Transfer Kinetics and Surface Stabilization SI.pdf
Postprint Éditeur (411.62 kB)
Supporting information
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Photoelectrochemistry; Solar cell; Photovoltaics; Prediction; Monitoring; Passivation; Recombination
Résumé :
[en] edox electrolyte contacts offer a simple way of testing the photocurrent generation/collection efficiency in partially completed thin-film solar cells without the need to complete the entire fabrication process. However, the development of a reliable quantitative method can be complicated by the instability of the semiconductor/electrolyte interface. In the case of Cu(In,Ga)Se2 (CIGSe) solar cells, these problems can be overcome by using samples that have undergone the next processing step in solar cell fabrication, which involves chemical bath deposition of a thin (ca. 50 nm) CdS buffer layer. The choice of redox system is also critical. The frequently used Eu3+/2+ redox couple is not suitable for reliable performance predictions since it suffers from very slow electron transfer kinetics. This leads to the buildup of photogenerated electrons near the interface, resulting in electron–hole recombination. This effect, which can be seen in the transient photocurrent response, has been quantified using intensity-modulated photocurrent spectroscopy (IMPS). The study has demonstrated that the more oxidizing Fe(CN)63–/4– redox system can be used when a CdS buffer layer is deposited on the CIGSe absorber. The wide bandgap CdS acts as a barrier to hole injection, preventing decomposition of the CIGSe and formation of surface recombination centers. The IMPS response of this system shows that there is no recombination; i.e., electron scavenging is very rapid. It is shown that measurements of the external quantum efficiency made using the Fe(CN)63–/4– redox couple with CdS-coated CIGSe layers can provide reliable predictions of the short-circuit currents of the complete solar cells. Similar results have been obtained using CdS-coated GaAs layers, suggesting that the new approach may be widely applicable.
Disciplines :
Physique
Chimie
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
COLOMBARA, Diego ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
DALE, Phillip ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Kissling, Gabriela P.
Peter, Laurence M.
TOMBOLATO, Sara ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Photoelectrochemical Screening of Solar Cell Absorber Layers: Electron Transfer Kinetics and Surface Stabilization
Date de publication/diffusion :
19 avril 2016
Titre du périodique :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
ISSN :
1932-7447
eISSN :
1932-7455
Maison d'édition :
American Chemical Society, Washington, Etats-Unis - District de Columbia
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Projet européen :
FP7 - 284486 - SCALENANO - Development and scale-up of nanostructured based materials and processes for low cost high efficiency chalcogenide based photovoltaics
Organisme subsidiant :
CE - Commission Européenne
Disponible sur ORBilu :
depuis le 05 mai 2016

Statistiques


Nombre de vues
271 (dont 18 Unilu)
Nombre de téléchargements
5 (dont 5 Unilu)

citations Scopus®
 
19
citations Scopus®
sans auto-citations
14
OpenCitations
 
12
citations OpenAlex
 
21
citations WoS
 
15

Bibliographie


Publications similaires



Contacter ORBilu