Article (Scientific journals)
Photoelectrochemical Screening of Solar Cell Absorber Layers: Electron Transfer Kinetics and Surface Stabilization
Colombara, Diego; Dale, Phillip; Kissling, Gabriela P. et al.
2016In Journal of Physical Chemistry. C, Nanomaterials and interfaces
Peer Reviewed verified by ORBi
 

Files


Full Text
Photoelectrochemical Screening of Solar Cell Absorber Layers - Electron Transfer Kinetics and Surface Stabilization.pdf
Publisher postprint (2.07 MB)
Request a copy
Full Text Parts
Photoelectrochemical Screening of Solar Cell Absorber Layers - Electron Transfer Kinetics and Surface Stabilization SI.pdf
Publisher postprint (411.62 kB)
Supporting information
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Photoelectrochemistry; Solar cell; Photovoltaics; Prediction; Monitoring; Passivation; Recombination
Abstract :
[en] edox electrolyte contacts offer a simple way of testing the photocurrent generation/collection efficiency in partially completed thin-film solar cells without the need to complete the entire fabrication process. However, the development of a reliable quantitative method can be complicated by the instability of the semiconductor/electrolyte interface. In the case of Cu(In,Ga)Se2 (CIGSe) solar cells, these problems can be overcome by using samples that have undergone the next processing step in solar cell fabrication, which involves chemical bath deposition of a thin (ca. 50 nm) CdS buffer layer. The choice of redox system is also critical. The frequently used Eu3+/2+ redox couple is not suitable for reliable performance predictions since it suffers from very slow electron transfer kinetics. This leads to the buildup of photogenerated electrons near the interface, resulting in electron–hole recombination. This effect, which can be seen in the transient photocurrent response, has been quantified using intensity-modulated photocurrent spectroscopy (IMPS). The study has demonstrated that the more oxidizing Fe(CN)63–/4– redox system can be used when a CdS buffer layer is deposited on the CIGSe absorber. The wide bandgap CdS acts as a barrier to hole injection, preventing decomposition of the CIGSe and formation of surface recombination centers. The IMPS response of this system shows that there is no recombination; i.e., electron scavenging is very rapid. It is shown that measurements of the external quantum efficiency made using the Fe(CN)63–/4– redox couple with CdS-coated CIGSe layers can provide reliable predictions of the short-circuit currents of the complete solar cells. Similar results have been obtained using CdS-coated GaAs layers, suggesting that the new approach may be widely applicable.
Disciplines :
Chemistry
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Physics
Author, co-author :
Colombara, Diego ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Dale, Phillip ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Kissling, Gabriela P.
Peter, Laurence M.
Tombolato, Sara ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
External co-authors :
yes
Language :
English
Title :
Photoelectrochemical Screening of Solar Cell Absorber Layers: Electron Transfer Kinetics and Surface Stabilization
Publication date :
19 April 2016
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
ISSN :
1932-7455
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Physics and Materials Science
European Projects :
FP7 - 284486 - SCALENANO - Development and scale-up of nanostructured based materials and processes for low cost high efficiency chalcogenide based photovoltaics
Funders :
CE - Commission Européenne [BE]
Available on ORBilu :
since 05 May 2016

Statistics


Number of views
166 (17 by Unilu)
Number of downloads
5 (5 by Unilu)

Scopus citations®
 
13
Scopus citations®
without self-citations
8
OpenCitations
 
12
WoS citations
 
9

Bibliography


Similar publications



Contact ORBilu