Article (Scientific journals)
Predicting MHC class I epitopes in large datasets
ROOMP, Kirsten; Antes, Iris; Lengauer, Thomas
2010In BMC Bioinformatics, 11 (90), p. 1-2
Peer Reviewed verified by ORBi
 

Files


Full Text
Predicting MHC class I epitopes in large datasets.pdf
Publisher postprint (704.06 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] BACKGROUND: Experimental screening of large sets of peptides with respect to their MHC binding capabilities is still very demanding due to the large number of possible peptide sequences and the extensive polymorphism of the MHC proteins. Therefore, there is significant interest in the development of computational methods for predicting the binding capability of peptides to MHC molecules, as a first step towards selecting peptides for actual screening. RESULTS: We have examined the performance of four diverse MHC Class I prediction methods on comparatively large HLA-A and HLA-B allele peptide binding datasets extracted from the Immune Epitope Database and Analysis resource (IEDB). The chosen methods span a representative cross-section of available methodology for MHC binding predictions. Until the development of IEDB, such an analysis was not possible, as the available peptide sequence datasets were small and spread out over many separate efforts. We tested three datasets which differ in the IC50 cutoff criteria used to select the binders and non-binders. The best performance was achieved when predictions were performed on the dataset consisting only of strong binders (IC50 less than 10 nM) and clear non-binders (IC50 greater than 10,000 nM). In addition, robustness of the predictions was only achieved for alleles that were represented with a sufficiently large (greater than 200), balanced set of binders and non-binders. CONCLUSIONS: All four methods show good to excellent performance on the comprehensive datasets, with the artificial neural networks based method outperforming the other methods. However, all methods show pronounced difficulties in correctly categorizing intermediate binders.
Disciplines :
Life sciences: Multidisciplinary, general & others
Identifiers :
UNILU:UL-ARTICLE-2012-567
Author, co-author :
ROOMP, Kirsten  ;  Max Planck Institute for Informatics, > Department of Computational Biology and Applied Algorithmics
Antes, Iris;  Technical University of Munich > Center for Integrated Protein Science Munich (CIPSM) and Department of Life Sciences
Lengauer, Thomas;  Max Planck Institute for Informatics, > Department of Computational Biology and Applied Algorithmics
External co-authors :
yes
Language :
English
Title :
Predicting MHC class I epitopes in large datasets
Publication date :
2010
Journal title :
BMC Bioinformatics
eISSN :
1471-2105
Publisher :
BioMed Central
Volume :
11
Issue :
90
Pages :
1-2
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 01 May 2016

Statistics


Number of views
43 (0 by Unilu)
Number of downloads
135 (0 by Unilu)

Scopus citations®
 
38
Scopus citations®
without self-citations
36
OpenCitations
 
36
WoS citations
 
37

Bibliography


Similar publications



Contact ORBilu