Article (Périodiques scientifiques)
Predicting MHC class I epitopes in large datasets
ROOMP, Kirsten; Antes, Iris; Lengauer, Thomas
2010In BMC Bioinformatics, 11 (90), p. 1-2
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Predicting MHC class I epitopes in large datasets.pdf
Postprint Éditeur (704.06 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] BACKGROUND: Experimental screening of large sets of peptides with respect to their MHC binding capabilities is still very demanding due to the large number of possible peptide sequences and the extensive polymorphism of the MHC proteins. Therefore, there is significant interest in the development of computational methods for predicting the binding capability of peptides to MHC molecules, as a first step towards selecting peptides for actual screening. RESULTS: We have examined the performance of four diverse MHC Class I prediction methods on comparatively large HLA-A and HLA-B allele peptide binding datasets extracted from the Immune Epitope Database and Analysis resource (IEDB). The chosen methods span a representative cross-section of available methodology for MHC binding predictions. Until the development of IEDB, such an analysis was not possible, as the available peptide sequence datasets were small and spread out over many separate efforts. We tested three datasets which differ in the IC50 cutoff criteria used to select the binders and non-binders. The best performance was achieved when predictions were performed on the dataset consisting only of strong binders (IC50 less than 10 nM) and clear non-binders (IC50 greater than 10,000 nM). In addition, robustness of the predictions was only achieved for alleles that were represented with a sufficiently large (greater than 200), balanced set of binders and non-binders. CONCLUSIONS: All four methods show good to excellent performance on the comprehensive datasets, with the artificial neural networks based method outperforming the other methods. However, all methods show pronounced difficulties in correctly categorizing intermediate binders.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Identifiants :
UNILU:UL-ARTICLE-2012-567
Auteur, co-auteur :
ROOMP, Kirsten  ;  Max Planck Institute for Informatics, > Department of Computational Biology and Applied Algorithmics
Antes, Iris;  Technical University of Munich > Center for Integrated Protein Science Munich (CIPSM) and Department of Life Sciences
Lengauer, Thomas;  Max Planck Institute for Informatics, > Department of Computational Biology and Applied Algorithmics
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Predicting MHC class I epitopes in large datasets
Date de publication/diffusion :
2010
Titre du périodique :
BMC Bioinformatics
eISSN :
1471-2105
Maison d'édition :
BioMed Central
Volume/Tome :
11
Fascicule/Saison :
90
Pagination :
1-2
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 01 mai 2016

Statistiques


Nombre de vues
119 (dont 0 Unilu)
Nombre de téléchargements
158 (dont 0 Unilu)

citations Scopus®
 
40
citations Scopus®
sans auto-citations
38
OpenCitations
 
36
citations OpenAlex
 
48
citations WoS
 
39

Bibliographie


Publications similaires



Contacter ORBilu