[en] We introduce a notion of relative isospectrality for surfaces with boundary having possibly non-compact ends either conformally compact or asymptotic to cusps. We obtain a compactness result for such families via a conformal surgery that allows us to reduce to the case of surfaces hyperbolic near infinity recently studied by Borthwick and Perry, or to the closed case by Osgood, Phillips, and Sarnak if there are only cusps.
Disciplines :
Mathématiques
Auteur, co-auteur :
ALDANA DOMINGUEZ, Clara Lucia ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Albin, Pierre
Rochon, Frédéric
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Compactness of Relatively Isospectral Sets of Surfaces Via Conformal Surgeries
Date de publication/diffusion :
avril 2015
Titre du périodique :
Journal of Geometric Analysis
ISSN :
1050-6926
eISSN :
1559-002X
Maison d'édition :
Springer New York LLC, New York, Etats-Unis - New York