Abstract :
[en] As a histone deacetylase inhibitor, valproic acid (VPA) is a candidate for anticancer therapy. Besides, VPA exhibits various mechanisms of action and its effects on the molecular basis of hematopoiesis remain unclear. To study the effects of VPA on the hematopoietic system, we performed microarray analysis using K562 cells treated with 1mM VPA over a 72h time course. The association between gene ontology (GO) terms and the lists of differentially expressed genes was tested using the Bioconductor package GOstats. Enrichment analysis for cellular differentiation pathways was performed based on manually curated gene lists. Results from microarray analysis were confirmed by studying cell differentiation features at the molecular and cellular levels using other hematopoietic cell lines as well as hematopoietic stem/progenitor CD34(+) cells. Microarray analysis revealed 3440 modulated genes in the presence of VPA. Genes involved in the granulo-monocytic differentiation pathway were up-regulated while genes of the erythroid pathway were down-regulated. This was confirmed by analyzing erythrocytic and myeloid membrane markers and lineage-related gene expression in HEL, MEG01, HL60 as well as CD34(+) cells. Moreover, GATA-1 and its co-factors (FOG1, SP1) were down-regulated, while myelopoiesis activator PU.1 was up-regulated, in agreement with an inhibition of erythropoiesis. Our functional profiling and cell phenotyping approach demonstrates that VPA is able to alter hematopoietic homeostasis by modifying the cell population balance in the myeloid compartment. This may lead to a potential failure of erythropoiesis in patients with cancer or chronic inflammatory diseases having a well-described propensity to anemia.
Scopus citations®
without self-citations
23