[en] We discuss a new notion of pattern avoidance motivated by the operad theory: pattern avoidance in planar labelled trees. It is a generalisation of various types of consecutive pattern avoidance studied before: consecutive patterns in words, permutations, coloured permutations etc. The notion of Wilf equivalence for patterns in permutations admits a straightforward generalisation for (sets of) tree patterns; we describe classes for trees with small numbers of leaves, and give several bijections between trees avoiding pattern sets from the same class. We also explain a few general results for tree pattern avoidance, both for the exact and the asymptotic enumeration.
Disciplines :
Mathematics
Author, co-author :
DOTSENKO, Vladimir ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit