chemical perceptron; analog perceptron; supervised learning; chemical computing; RNMSE; linear function; quadratic function
Résumé :
[en] The current biochemical information processing systems behave in a pre-determined manner because all features are defined during the design phase. To make such unconventional computing systems reusable and programmable for biomedical applications, adaptation, learning, and self-modification based on external stimuli would be highly desirable. However, so far, it has been too challenging to implement these in wet chemistries. In this paper we extend the chemical perceptron, a model previously proposed by the authors, to function as an analog instead of a binary system. The new analog asymmetric signal perceptron learns through feedback and supports Michaelis-Menten kinetics. The results show that our perceptron is able to learn linear and nonlinear (quadratic) functions of two inputs. To the best of our knowledge, it is the first simulated chemical system capable of doing so. The small number of species and reactions and their simplicity allows for a mapping to an actual wet implementation using DNA-strand displacement or deoxyribozymes. Our results are an important step toward actual biochemical systems that can learn and adapt.
Disciplines :
Sciences informatiques Chimie
Auteur, co-auteur :
BANDA, Peter ; Portland State University > Department of Computer Science
Teuscher, Christof
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Learning Two-input Linear and Nonlinear Analog Functions with a Simple Chemical System
Date de publication/diffusion :
2014
Nom de la manifestation :
The 13th International Conference on Unconventional Computation and Natural Computation
Lieu de la manifestation :
London, Canada
Date de la manifestation :
from 14-07-2014 to 18-07-2014
Manifestation à portée :
International
Titre de l'ouvrage principal :
Unconventional Computing and Natural Computing Conference
Wang, W., Li, S., Mair, L., Ahmed, S., Huang, T.J., Mallouk, T.E.: Acoustic Propulsion of Nanorod Motors Inside Living Cells. Angewandte Chemie International Edition 53(12), 3201-3204 (2014)
LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nature Biotechnology 21(10), 1184-1191 (2003)
Haykin, S.: Neural networks and learning machines, 3rd edn. Pearson, New Jersey (2009)
Bray, D.: Protein molecules as computational elements in living cells. Nature 376(6538), 307-312 (1995)
Mills, A.P., Yurke, B., Platzman, P.M.: Article for analog vector algebra computation. Biosystems 52(1-3), 175-180 (1999)
Kim, J., Hopfield, J.J., Winfree, E.: Neural network computation by in vitro tran-scriptional circuits. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 681-688. MIT Press (2004)
Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organisation in the brain. Psychological Review 65, 368-408 (1958)
Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368-372 (2011)
Banda, P., Teuscher, C., Lakin, M.R.: Online learning in a chemical perceptron. Artificial Life 19(2), 195-219 (2013)
Banda, P., Teuscher, C., Stefanovic, D.: Training an asymmetric signal percep-tron through reinforcement in an artificial chemistry. Journal of the Royal Society Interface 11(93) (2014)
Moles, J., Banda, P., Teuscher, C.: Delay line as a chemical reaction network (under review). Parallel Processing Letters (2014)
Espenson, J.: Chemical kinetics and reaction mechanisms. McGraw-Hill, Singapore (1995)
Copeland, R.A.: Enzymes: A practical introduction to structure, mechanism, and data analysis, 2nd edn. John Wiley & Sons, Inc., New York (2002)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359-366 (1989)
Rojas, R.: Neural networks: A systematic introduction. Springer, Berlin (1996)
Lakin, M.R., Minnich, A., Lane, T., Stefanovic, D.: Towards a biomolecular learning machine. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 152-163. Springer, Heidelberg (2012)
Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences of the United States of America 107(12), 5393-5398 (2010)
Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry 3(2), 103-113 (2011)