Pas de texte intégral
Article (Périodiques scientifiques)
Training an asymmetric signal perceptron through reinforcement in an artificial chemistry
BANDA, Peter; Teuscher, Christof; Stefanovic, Darko
2014In Journal of the Royal Society, Interface, 11 (93)
Peer reviewed
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
chemical perceptron; representation asymmetry; reinforcement learning; mass-action kinetics; thresholding; robustness
Résumé :
[en] State-of-the-art biochemical systems for medical applications and chemical computing are application-specific and cannot be reprogrammed or trained once fabricated. The implementation of adaptive biochemical systems that would offer flexibility through programmability and autonomous adaptation faces major challenges because of the large number of required chemical species as well as the timing-sensitive feedback loops required for learning. In this paper, we begin addressing these challenges with a novel chemical perceptron that can solve all 14 linearly separable logic functions. The system performs asymmetric chemical arithmetic, learns through reinforcement and supports both Michaelis–Menten as well as mass-action kinetics. To enable cascading of the chemical perceptrons, we introduce thresholds that amplify the outputs. The simplicity of our model makes an actual wet implementation, in particular by DNA-strand displacement, possible.
Disciplines :
Chimie
Sciences informatiques
Auteur, co-auteur :
BANDA, Peter ;  Portland State University > Department of Computer Science
Teuscher, Christof
Stefanovic, Darko
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Training an asymmetric signal perceptron through reinforcement in an artificial chemistry
Date de publication/diffusion :
2014
Titre du périodique :
Journal of the Royal Society, Interface
Maison d'édition :
The Royal Society
Volume/Tome :
11
Fascicule/Saison :
93
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 17 mars 2016

Statistiques


Nombre de vues
142 (dont 4 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
27
citations Scopus®
sans auto-citations
13
OpenCitations
 
21
citations OpenAlex
 
32
citations WoS
 
19

Bibliographie


Publications similaires



Contacter ORBilu