Hansen, K.; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, Germany
Biegler, F.; Machine Learning Group, Technical University of Berlin, Marchstr. 23, Berlin, Germany
Ramakrishnan, R.; Department of Chemistry, National Center for Computational Design and Discovery of Novel Materials, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
Pronobis, W.; Machine Learning Group, Technical University of Berlin, Marchstr. 23, Berlin, Germany
Von Lilienfeld, O. A.; Department of Chemistry, National Center for Computational Design and Discovery of Novel Materials, University of Basel, Klingelbergstrasse 80, Basel, Switzerland, Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, United States
Müller, K.-R.; Machine Learning Group, Technical University of Berlin, Marchstr. 23, Berlin, Germany, Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-ku, Seoul, South Korea
TKATCHENKO, Alexandre ; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, Germany
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
Date de publication/diffusion :
2015
Titre du périodique :
Journal of Physical Chemistry Letters
eISSN :
1948-7185
Maison d'édition :
American Chemical Society
Volume/Tome :
6
Fascicule/Saison :
12
Pagination :
2326-2331
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
MU 987/20, DFG, Natural Sciences and Engineering Research Council of Canada; ERC, Natural Sciences and Engineering Research Council of Canada; NSERC, Natural Sciences and Engineering Research Council of Canada; PP00P2-138932, SNSF, Natural Sciences and Engineering Research Council of Canada