Article (Périodiques scientifiques)
Machine learning of molecular electronic properties in chemical compound space
Montavon, Gregoire; Rupp, Matthias; Gobre, Vivekanand et al.
2013In New Journal of Physics, 15
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Machine learning of molecular electronic properties in chemical compound space.pdf
Postprint Éditeur (7.19 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy polarizability, frontier orbital eigenvalues, ionization potential electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a `quantum machine' is similar, and sometimes superior, to modern quantum-chemical methods-at negligible computational cost.
Disciplines :
Physique
Auteur, co-auteur :
Montavon, Gregoire;  Machine Learning Group, Technical University of Berlin, Marchstraße 23, D-10587 Berlin, Germany
Rupp, Matthias;  Institute of Pharmaceutical Sciences, ETH Zurich, CH 8093 Z ̈ urich, Switzerland
Gobre, Vivekanand;  Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
Vazquez-Mayagoitia, Alvaro;  Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 0439, USA
Hansen, Katja;  Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
TKATCHENKO, Alexandre ;  Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany ; Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
Mueller, Klaus-Robert;  Machine Learning Group, Technical University of Berlin, Marchstraße 23, D-10587 Berlin, Germany ; Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea
von Lilienfeld, O. Anatole;  Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 0439, USA
Co-auteurs externes :
yes
Titre :
Machine learning of molecular electronic properties in chemical compound space
Date de publication/diffusion :
2013
Titre du périodique :
New Journal of Physics
ISSN :
1367-2630
Maison d'édition :
IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND, Inconnu/non spécifié
Volume/Tome :
15
Peer reviewed :
Peer reviewed vérifié par ORBi
Commentaire :
Article
Disponible sur ORBilu :
depuis le 02 mars 2016

Statistiques


Nombre de vues
396 (dont 4 Unilu)
Nombre de téléchargements
345 (dont 0 Unilu)

citations Scopus®
 
582
citations Scopus®
sans auto-citations
499
OpenCitations
 
430
citations OpenAlex
 
606
citations WoS
 
552

Bibliographie


Publications similaires



Contacter ORBilu